BACKGROUND: Overtreatment of catheter-associated bacteriuria is a quality and safety problem, despite the availability of evidence-based guidelines.
Little is known about how guidelines-based knowledge is integrated into clinicians' mental models for diagnosing catheter-associated urinary tract infection (CA-UTI). The objectives of this research were to better understand clinicians' mental models for CA-UTI, and to develop and validate an algorithm to improve diagnostic accuracy for CA-UTI.
METHODS: We conducted two phases of this research project. In phase one, 10 clinicians assessed and diagnosed four patient cases of catheter associated bacteriuria (n= 40 total cases). We assessed the clinical cues used when diagnosing these cases to determine if the mental models were IDSA guideline compliant. In phase two, we developed a diagnostic algorithm derived from the IDSA guidelines. IDSA guideline authors and non-expert clinicians evaluated the algorithm for content and face validity. In order to determine if diagnostic accuracy improved using the algorithm, we had experts and non-experts diagnose 71 cases of bacteriuria.
RESULTS: Only 21 (53%) diagnoses made by clinicians without the algorithm were guidelines-concordant with fair inter-rater reliability between clinicians (Fleiss' kappa = 0.35, 95% Confidence Intervals (CIs) = 0.21 and 0.50). Evidence suggests that clinicians' mental models are inappropriately constructed in that clinicians endorsed guidelines-discordant cues as influential in their decision-making: pyuria, systemic leukocytosis, organism type and number, weakness, and elderly or frail patient. Using the algorithm, inter-rater reliability between the expert and each non-expert was substantial (Cohen's kappa = 0.72, 95% CIs = 0.52 and 0.93 between the expert and non-expert #1 and 0.80, 95% CIs = 0.61 and 0.99 between the expert and non-expert #2).
CONCLUSIONS: Diagnostic errors occur when clinicians' mental models for catheter-associated bacteriuria include cues that are guidelines-discordant for CA-UTI. The understanding we gained of clinicians' mental models, especially diagnostic errors, and the algorithm developed to address these errors will inform interventions to improve the accuracy and reliability of CA-UTI diagnoses.
Written by:
Trautner BW, Bhimani RD, Amspoker AB, Hysong SJ, Garza A, Kelly PA, Payne VL, Naik AD. Are you the author?
Houston Health Services Research and Development Center of Excellence, Michael E, DeBakey VA Medical Center, Houston, TX, USA.
Reference: BMC Med Inform Decis Mak. 2013 Apr 15;13:48.
doi: 10.1186/1472-6947-13-48
PubMed Abstract
PMID: 23587259