Low-intensity extracorporeal shockwave therapy (Li-ESWT) is emerging as a promising and safe treatment for Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). In this study, we aimed to investigate the role of the gut microbiota involved in the prostate microenvironment and symptom improvement during the Li-ESWT for CP/CPPS patients.
CP/CPPS patients not taking antibiotics or other treatments were included. NIH-Chronic Prostatitis Symptom Index (NIH-CPSI), International Prostate Symptom Score (IPSS), and International Index of Erectile Function (IIEF-5) were used to evaluate the effectiveness of Li-ESWT at the end of treatment. Visual analogue scale/score was used to evaluate the pain during procedure. Stool and semen samples were collected before and after Li-ESWT. Shotgun metagenomics analyzed gut microbiota, while ELISA and other diagnostic kits detected biochemical changes in seminal plasma.
Of the 60 enrolled patients, 52 completed treatment. Li-ESWT response rate was 78.8% (41/52) at end of treatment. Among responders, the subitems of the NIH-CPSI; IPSS; and IIEF-5 scores improved significantly, and the seminal plasma analysis showed decreased TNF-a and MDA levels and increased SOD and Zn2+ levels posttreatment. Gut microbiome analysis indicated that posttreatment, both α and β diversity increased, and the abundance of certain specific species significantly increased. Fifty-eight pathways significantly enriched posttreatment, notably in branched-chain amino acid synthesis and butyrate synthesis. The abundance of several specific species was found to be significantly higher in non-responders than responders. Among responders, at the species level, some bacteria associated with NIH-CPSI and its subscales, IPSS, IIEF-5, and prostate microenvironment markers (TNF-a, MDA, Zn2+, and SOD) were identified.
Our study demonstrates for the first time that Li-ESWT improves the prostate microenvironment and gut microbiota in CP/CPPS patients. Treatment nonresponse may be associated with a high abundance of specific pathogens before treatment. The gut microbiota could have a significant impact on Li-ESWT response and the prostate microenvironment.
The Prostate. 2024 Sep 22 [Epub ahead of print]
Xiangbin Kong, Zhilong Dong, Weiwei Hu, Jun Mi, Jie Xiao, Yiran Wang, Wenfang Chen, Zixu Pei, Zongyao Hao, Chaozhao Liang, Qi Wang, Zhiping Wang
Department of Urology/Research Institute of Urology/Gansu Clinical Medical Research Center for Urological Diseases/Clinical Center of Gansu Province for Urological Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China., Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China., The Second Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China., Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China., Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China.