Role of neurogenic inflammation in local communication in the visceral mucosa

Intense research has focused on the involvement of the nervous system in regard to cellular mechanisms underlying neurogenic inflammation in the pelvic viscera. Evidence supports the neural release of inflammatory factors, trophic factors, and neuropeptides in the initiation of inflammation. However, more recently, non-neuronal cells including epithelia, endothelial, mast cells, and paraneurons are likely important participants in nervous system functions. For example, the urinary bladder urothelial cells are emerging as key elements in the detection and transmission of both physiological and nociceptive stimuli in the lower urinary tract. There is mounting evidence that these cells are involved in sensory mechanisms and can release mediators. Further, localization of afferent nerves next to the urothelium suggests these cells may be targets for transmitters released from bladder nerves and that chemicals released by urothelial cells may alter afferent excitability. Modifications of this type of communication in a number of pathological conditions can result in altered release of epithelial-derived mediators, which can activate local sensory nerves. Taken together, these and other findings highlighted in this review suggest that neurogenic inflammation involves complex anatomical and physiological interactions among a number of cell types in the bladder wall. The specific factors and pathways that mediate inflammatory responses in both acute and chronic conditions are not well understood and need to be further examined. Elucidation of mechanisms impacting on these pathways may provide insights into the pathology of various types of disorders involving the pelvic viscera.

Seminars in immunopathology. 2018 Mar 26 [Epub ahead of print]

Lori A Birder, F Aura Kullmann

Department of Medicine, University of Pittsburgh School of Medicine, A 1217 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA. ., Department of Medicine, University of Pittsburgh School of Medicine, A 1217 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.