Urinary bladder sigma-1 receptors: A new target for cystitis treatment.

No adequate treatment is available for painful urinary bladder disorders such as interstitial cystitis/bladder pain syndrome, and the identification of new urological therapeutic targets is an unmet need. The sigma-1 receptor (σ1-R) modulates somatic pain, but its role in painful urological disorders is unexplored. The urothelium expresses many receptors typical of primary sensory neurons (e.g. TRPV1, TRPA1 and P2X3) and high levels of σ1-R have been found in these neurons; we therefore hypothesized that σ1-R may also be expressed in the urothelium and may have functional relevance in this tissue. With western blotting and immunohistochemical methods, we detected σ1-R in the urinary bladder in wild-type (WT) but not in σ1-R-knockout (σ1-KO) mice. Interestingly, σ1-R was located in the bladder urothelium not only in mouse, but also in human bladder sections. The severity of histopathological (edema, hemorrhage and urothelial desquamation) and biochemical alterations (enhanced myeloperoxidase activity and phosphorylation of extracellular regulated kinases 1/2 [pERK1/2]) that characterize cyclophosphamide-induced cystitis was lower in σ1-KO than in WT mice. Moreover, cyclophosphamide-induced pain behaviors and referred mechanical hyperalgesia were dose-dependently reduced by σ1-R antagonists (BD-1063, NE-100 and S1RA) in WT but not in σ1-KO mice. In contrast, the analgesic effect of morphine was greater in σ1-KO than in WT mice. Together these findings suggest that σ1-R plays a functional role in the mechanisms underlying cyclophosphamide-induced cystitis, and modulates morphine analgesia against urological pain. Therefore, σ1-R may represent a new drug target for urinary bladder disorders.

Pharmacological research. 2020 Feb 24 [Epub ahead of print]

Rafael González-Cano, Antonia Artacho-Cordón, Lucía Romero, Miguel A Tejada, Francisco R Nieto, Manuel Merlos, Francisco J Cañizares, Cruz M Cendán, Eduardo Fernández-Segura, José M Baeyens

Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Anesthesia Department and Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain., Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain., Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain., Drug Discovery and Preclinical Development, Esteve Pharmaceuticals SA, Barcelona, 08028, Spain., Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain; Department of Histology, Faculty of Medicine, University of Granada, Granada, 18016, Spain., Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain. Electronic address: .