Catheter-associated urinary tract infections (CAUTIs) are a significant cause of morbidity worldwide, as they account for 40% of all hospital-associated infections. Microbial biofilm formation on urinary catheters (UCs) limits antibiotic efficacy, making CAUTI extremely difficult to treat. To gain insight into the spatiotemporal microbe interactions on the catheter surface we sought to determine how the presence or absence of bacteriuria prior to catheterization affects the organism that ultimately forms a biofilm on the UC and how long after catheterization they emerge.
Thirty UCs were collected from patients who received a urine culture prior to catheterization, a UC, and antibiotics as part of standard of care. Immunofluorescence imaging and scanning electron microscopy were used to visualize patient UCs.
Most patients did not have bacteria in their urine (based on standard urinalysis) prior to catheterization, yet microbes were detected on the majority of UCs, even with dwell times of < 3 days. The most frequently identified microbes were Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli.
This study indicates that despite patients having negative urine cultures and receiving antibiotics prior to catheter placement, microbes, including uropathogens associated with causing CAUTI, could be readily detected on UCs with short dwell times. This suggests that a potential microbial catheter reservoir can form soon after placement, even in the presence of antibiotics, which may serve to facilitate the development of CAUTI. Thus, removing and/or replacing UCs as soon as possible is of critical importance to reduce the risk of developing CAUTI.
World journal of urology. 2019 Dec 02 [Epub ahead of print]
Jennifer N Walker, Ana L Flores-Mireles, Aaron J L Lynch, Chloe Pinkner, Michael G Caparon, Scott J Hultgren, Alana Desai
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110-1093, USA., Division of Urologic Surgery, Department of Surgery, Washington University School of Medicine, 4960 Children's Place, Box 8242, St. Louis, MO, 63110-1093, USA. .