Overtreatment with cisplatin-based chemotherapy is a major issue in the management of muscle-invasive bladder cancer (MIBC), and currently none of the reported biomarkers for predicting response have been implemented in the clinic. Here we perform a comprehensive multi-omics analysis (genomics, transcriptomics, epigenomics and proteomics) of 300 MIBC patients treated with chemotherapy (neoadjuvant or first-line) to identify molecular changes associated with treatment response. DNA-based associations with response converge on genomic instability driven by a high number of chromosomal alterations, indels, signature 5 mutations and/or BRCA2 mutations. Expression data identifies the basal/squamous gene expression subtype to be associated with poor response. Immune cell infiltration and high PD-1 protein expression are associated with treatment response. Through integration of genomic and transcriptomic data, we demonstrate patient stratification to groups of low and high likelihood of cisplatin-based response. This could pave the way for future patient selection following validation in prospective clinical trials.
Nature communications. 2020 Sep 25*** epublish ***
Ann Taber, Emil Christensen, Philippe Lamy, Iver Nordentoft, Frederik Prip, Sia Viborg Lindskrog, Karin Birkenkamp-Demtröder, Trine Line Hauge Okholm, Michael Knudsen, Jakob Skou Pedersen, Torben Steiniche, Mads Agerbæk, Jørgen Bjerggaard Jensen, Lars Dyrskjøt
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark., Department of Pathology, Aarhus University Hospital, Aarhus, Denmark., Department of Oncology, Aarhus University Hospital, Aarhus, Denmark., Department of Clinical Medicine, Aarhus University, Aarhus, Denmark., Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark. .