Androgen-sensitive microsomal signaling networks coupled to the proliferation and differentiation of human prostate cancer cells - Abstract

Increasing evidence suggests that the disruption of androgen-mediated cellular processes, such as cell proliferation and cell differentiation, contributes to the development of early-stage androgen-dependent prostate cancers.

Large-scale mRNA profiling experiments have paved the way in identifying androgen-regulated gene networks that control the proliferation, survival, and differentiation of prostate cancer cells. Despite these extensive research efforts, it remains to be determined whether all androgen-mediated mRNA changes faithfully translate into changes in protein abundance that influence prostate tumorigenesis. Here, we report on a mass spectrometry-based quantitative proteomics analysis that identified known androgen signaling pathways and also novel, androgen-sensitive microsome-associated proteins and protein networks that had not been discovered by gene network studies in human LNCaP prostate cancer cells. Androgen-sensitive microsome-associated proteins encoded components of the insulin growth factor-1 (IGF-1), phosphoinositide 3-kinase (PI3K)/AKT, and extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling pathways. Further bioinformatic analyses showed most of the androgen-sensitive microsome-associated protein networks play roles in cell proliferation and differentiation. Functional validation experiments showed that the androgen-sensitive microsome-associated proteins Janus kinase 2 (JAK2) and I-kappa B kinase complex-associated protein (IKAP) modulated the expression of prostate epithelial and neuronal markers, attenuated proliferation through an androgen receptor-dependent mechanism, and co-regulated androgen receptor-mediated transcription in LNCaP cells. Further biochemical analyses showed that the increased proliferation in JAK2 knockdown cells was mediated by activation of the mammalian target of rapamycin (mTOR), as determined by increased phosphorylation of several downstream targets (p70 S6 kinase, translational repressor 4E-BP1, and 40S ribosomal S6 protein). We conclude that the expression of microsome-associated proteins that were previously implicated in the tumorigenesis of prostate epithelial cells is strongly influenced by androgens. These findings provide a molecular framework for exploring the mechanisms underlying prostate tumorigenesis and how these protein networks might be attenuated or potentiated in disrupting the growth and survival of human prostate cancers.

Written by:
Martinez HD, Hsiao JJ, Jasavala RJ, Hinkson IV, Eng JK, Wright ME.   Are you the author?
University of California Davis Genome Center, University of California at Davis, Davis, CA, USA.

Reference: Genes Cancer. 2011 Oct;2(10):956-78.
doi: 10.1177/1947601912436422


PubMed Abstract
PMID: 22701762

UroToday.com Investigative Urology Section