In situ vaccination with CD204 gene-silenced dendritic cell, not unmodified dendritic cell, enhances radiation therapy of prostate cancer - Abstract

Given the complexity of prostate cancer progression and metastasis, multimodalities that target different aspects of tumor biology, e.g., radiotherapy (RT) in conjunction with immunotherapy, may provide the best opportunities for promoting clinical benefits in patients with high risk localized prostate cancer.

Here we show that intratumoral administration of unmodified dendritic cells (DCs) failed to synergize with fractionated RT. However, ionizing radiation combined with in situ vaccination with DCs, in which the immunosuppressive scavenger receptor A (SRA/CD204) has been downregulated by lentivirus-mediated gene silencing, profoundly suppressed the growth of two mouse prostate cancers (e.g., RM1 and TRAMP-C2), and prolonged the lifespan of tumor-bearing animals. Treatment of subcutaneous tumors with this novel combinatorial radio-immunotherapeutic regimen resulted in a significant reduction in distant experimental metastases. SRA/CD204-silenced DCs were highly efficient in generating antigen or tumor-specific T cells with increased effector functions (e.g., cytokine production and tumoricidal activity). SRA/CD204 silencing-enhanced tumor cell death was associated with elevated IFN-γ levels in tumor tissue and increased tumor-infiltrating CD8+ cells. IFN-γ neutralization or depletion of CD8+ cells abrogated the SRA/CD204 downregulation-promoted antitumor efficacy, indicating a critical role of IFN-γ-producing CD8+ T cells. Therefore, blocking SRA/CD204 activity significantly enhances the therapeutic potency of local RT combined with in situ DC vaccination by promoting a robust systemic antitumor immunity. Further studies are warranted to test this novel combinatorial approach for translating into improved clinical outcomes in prostate cancer patients.

Written by:
Guo C, Yi H, Yu X, Zuo D, Qian J, Yang G, Foster BA, Subjeck JR, Sun X, Mikkelsen RB, Fisher PB, Wang XY.   Are you the author?
Human and Molecular Genetics, Virginia Commonwealth University, 401 College St, PO Box 980035, Richmond, VA, 23298, United States.

Reference: Mol Cancer Ther. 2012 Aug 15. Epub ahead of print.
doi: 10.1158/1535-7163.MCT-12-0164


PubMed Abstract
PMID: 22896667

UroToday.com Investigative Urology Section