Targeting the oncogenic E3 ligase Skp2 in prostate and breast cancer cells with a novel energy restriction-mimetic agent - Abstract

Substantial evidence supports the oncogenic role of the E3 ubiquitin ligase S-phase kinase-associated protein 2 (Skp2) in many types of cancers through its ability to target a broad range of signaling effectors for ubiquitination.

Thus, this oncogenic E3 ligase represents an important target for cancer drug discovery. In this study, we report a novel mechanism by which CG-12, a novel energy restriction-mimetic agent (ERMA), down-regulates the expression of Skp2 in prostate cancer cells. Pursuant to our previous finding that upregulation of β-transducin repeat-containing protein (β-TrCP) expression represents a cellular response in cancer cells to ERMAs, including CG-12 and 2-deoxyglucose, we demonstrated that this β-TrCP accumulation resulted from decreased Skp2 expression. Evidence indicates that Skp2 targets β-TrCP for degradation via the cyclin-dependent kinase 2-facilitated recognition of the proline-directed phosphorylation motif 412SP. This Skp2 downregulation was attributable to Sirt1-dependent suppression of COP9 signalosome (Csn)5 expression in response to CG-12, leading to increased cullin 1 neddylation in the Skp1-cullin1-F-box protein complex and consequent Skp2 destabilization. Moreover, we determined that Skp2 and β-TrCP are mutually regulated, providing a feedback mechanism that amplifies the suppressive effect of ERMAs on Skp2. Specifically, cellular accumulation of β-TrCP reduced the expression of Sp1, a β-TrCP substrate, which, in turn, reduced Skp2 gene expression. This Skp2-β-TrCP-Sp1 feedback loop represents a novel crosstalk mechanism between these two important F-box proteins in cancer cells with aberrant Skp2 expression under energy restriction, which provides a proof-of-concept that the oncogenic Csn5/Skp2 signaling axis represents a "druggable" target for this novel ERMA.

Written by:
Wei S, Chu PC, Chuang HC, Hung WC, Kulp SK, Chen CS.   Are you the author?
Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA.

Reference: PLoS One. 2012;7(10):e47298.
doi: 10.1371/journal.pone.0047298


PubMed Abstract
PMID: 23071779

UroToday.com Investigative Urology Section