The role of glycans in the development and progression of prostate cancer

Prostate cancer is a unique and heterogeneous disease. Currently, a major unmet clinical need exists to develop biomarkers that enable indolent disease to be distinguished from aggressive disease. The prostate is an abundant secretor of glycoproteins of all types, and alterations in glycans are, therefore, attractive as potential biomarkers and therapeutic targets.

Despite progress over the past decade in profiling the genome and proteome, the prostate cancer glycoproteome remains relatively understudied. A wide range of alterations in the glycoproteins on prostate cancer cells can occur, including increased sialylation and fucosylation, increased O-β-N-acetylglucosamine (GlcNAc) conjugation, the emergence of cryptic and high-mannose N-glycans and alterations to proteoglycans. Glycosylation can alter protein function and has a key role in many important biological processes in cancer including cell adhesion, migration, interactions with the cell matrix, immune surveillance, cell signalling and cellular metabolism; altered glycosylation in prostate cancer might modify some, or all of these processes. In the past three years, powerful tools such as glycosylation-specific antibodies and glycosylation gene signatures have been developed, which enable detailed analyses of changes in glycosylation. Thus, emerging data on these often overlooked modifications have the potential to improve risk stratification and therapeutic strategies in patients with prostate cancer.

Nature reviews. Urology. 2016 Apr 19 [Epub ahead of print]

Jennifer Munkley, Ian G Mills, David J Elliott

Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK., Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospitals, Forskningsparken, Gaustadalléen 21, N-0349 Oslo, Norway., Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.