A significant number of castration-resistant prostate cancer (CRPC) evolve into a neuroendocrine (NE) subtype termed NEPC, leading to resistance to androgen receptor (AR) pathway inhibitors and poor clinical outcomes. Through Hi-C analyses of a panel of patient-derived xenograft tumors, here we report drastically different 3D chromatin architectures between NEPC and CRPC samples. Such chromatin re-organization was faithfully recapitulated in vitro on isogenic cells undergoing NE transformation (NET). Mechanistically, neural transcription factor (TF) NKX2-1 is selectively and highly expressed in NEPC tumors and is indispensable for NET across various models. NKX2-1 preferentially binds to gene promoters, but it interacts with chromatin-pioneering factors such as FOXA2 at enhancer elements through chromatin looping, further strengthening FOXA2 binding at NE enhancers. Conversely, FOXA2 mediates regional DNA demethylation, attributing to NE enhancer priming and inducing NKX2-1 expression, forming a feed-forward loop. Single-cell multiome analyses of isogenic cells over time-course NET cells identify individual cells amid luminal-to-NE transformation, exhibiting intermediate epigenetic and transcriptome states. Lastly, NKX2-1/FOXA2 interacts with, and recruits CBP/p300 proteins to activate NE enhancers, and pharmacological inhibitors of CBP/p300 effectively blunted NE gene expression and abolished NEPC tumor growth. Thus, our study reports a hierarchical network of TFs governed by NKX2-1 in regulating the 2D and 3D chromatin re-organization during NET and uncovers a promising therapeutic approach to eradicate NEPC.
bioRxiv : the preprint server for biology. 2024 Dec 07*** epublish ***
Xiaodong Lu, Viriya Keo, Irina Cheng, Wanqing Xie, Galina Gritsina, Juan Wang, Qiushi Jin, Peng Jin, Feng Yue, Martin G Sanda, Victor Corces, Nicolas Altemose, Jonathan C Zhao, Jindan Yu