The tumor microenvironment (TME) is rich in matrix components, growth factors, cytokines, and enzymatic modifiers that respond to changing conditions, to alter the fundamental properties of the tumor bed. Perlecan/HSPG2, a large, multi-domain heparan sulfate proteoglycan, is concentrated in the reactive stroma that surrounds tumors. Depending on its state in the TME, perlecan can either prevent or promote the progression of cancers to metastatic disease. Breast, prostate, lung, and renal cancers all preferentially metastasize to bone, a dense, perlecan-rich environment that is initially a "hostile" niche for cancer cells. Driven by inflammation, production of perlecan and its enzyme modifiers, which include matrix metalloproteinases (MMPs), sulfatases (SULFs), and heparanase (HPSE), increases in the reactive stroma surrounding growing and invading tumors. MMPs act upon the perlecan core protein, releasing bioactive fragments of the protein, primarily from C-terminal domains IV and V. These fragments influence cell adhesion, invasion, and angiogenesis. Sulfatases and heparanases act directly upon the heparan sulfate chains, releasing growth factors from reservoirs to reach receptors on the cancer cell surface. We propose that perlecan modifiers, by promoting the degradation of the perlecan-rich stroma, "flip the molecular switch" and convert the "hostile" stroma into a welcoming one that supports cancer dissemination and metastasis. Targeted therapies that prevent this molecular conversion of the TME should be considered as potential new therapeutics to limit metastasis.
Advances in experimental medicine and biology. 2020 Jan [Epub]
Lissette A Cruz, Tristen V Tellman, Mary C Farach-Carson
Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA., Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA. .