Sarcomatoid dedifferentiation is common to multiple renal cell carcinoma (RCC) subtypes, including chromophobe RCC (ChRCC), and is associated with increased aggressiveness, resistance to targeted therapies, and heightened sensitivity to immunotherapy. To study ChRCC dedifferentiation, we performed multiregion integrated paired pathological and genomic analyses. Interestingly, ChRCC dedifferentiates not only into sarcomatoid but also into anaplastic and glandular subtypes, which are similarly associated with increased aggressiveness and metastases. Dedifferentiated ChRCC shows loss of epithelial markers, convergent gene expression, and whole genome duplication from a hypodiploid state characteristic of classic ChRCC. We identified an intermediate state with atypia and increased mitosis but preserved epithelial markers. Our data suggest that dedifferentiation is initiated by hemizygous mutation of TP53, which can be observed in differentiated areas, as well as mutation of PTEN. Notably, these mutations become homozygous with duplication of preexisting monosomes (i.e., chromosomes 17 and 10), which characterizes the transition to dedifferentiated ChRCC. Serving as potential biomarkers, dedifferentiated areas become accentuated by mTORC1 activation (phospho-S6) and p53 stabilization. Notably, dedifferentiated ChRCC share gene enrichment and pathway activation features with other sarcomatoid RCC, suggesting convergent evolutionary trajectories. This study expands our understanding of aggressive ChRCC, provides insight into molecular mechanisms of tumor progression, and informs pathologic classification and diagnostics.
JCI insight. 2024 Apr 18*** epublish ***
Payal Kapur, Hua Zhong, Daniel Le, Ratna Mukhopadhyay, Jeffrey Miyata, Deyssy Carrillo, Dinesh Rakheja, Satwik Rajaram, Steffen Durinck, Zora Modrusan, James Brugarolas
Department of Pathology and., Molecular Biology Department, Genentech Inc., South San Francisco, California, USA., Kidney Cancer Program at Simmons Comprehensive Cancer Center, Dallas, Texas, USA., Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.