Chemopreventive efficacy of hesperidin against chemically induced nephrotoxicity and renal carcinogenesis via amelioration of oxidative stress and modulation of multiple molecular pathways

In the present study, chemopreventive efficacy of hesperidin was evaluated against ferric nitrilotriacetate (Fe-NTA) induced renal oxidative stress and carcinogenesis in wistar rats. Nephrotoxicity was induced by single intraperitoneal injection of Fe-NTA (9mg Fe/kg b.

wt). Renal cancer was initiated by the administration of N-nitrosodiethylamine (DEN 200mg/kg b. wt ip) and promoted by Fe-NTA (9mg Fe/kg b. wt ip) twice weekly for 16weeks. Efficacy of hesperidin against Fe-NTA-induced nephrotoxicity was assessed in terms of biochemical estimation of antioxidant enzyme activities viz. reduced renal GSH, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, catalase, superoxide dismutase and renal toxicity markers (BUN, Creatinine, KIM-1). Administration of Fe-NTA significantly depleted antioxidant renal armory, enhanced renal lipid peroxidation as well as the levels of BUN, creatinine and KIM-1. However, simultaneous pretreatment of hesperidin restored their levels in a dose dependent manner. Expression of apoptotic markers caspase-3, caspase-9, bax, bcl-2 and proliferative marker PCNA along with inflammatory markers (NFκB, iNOS, TNF-α) were also analysed to assess the chemopreventive potential of hesperidin in two-stage renal carcinogenesis model. Hesperidin was found to induce caspase-3, caspase-9, bax expression and downregulate bcl-2, NFκB, iNOS, TNF-α, PCNA expression. Histopathological findings further revealed hesperidin's chemopreventive efficacy by restoring the renal morphology. Our results provide a powerful evidence suggesting hesperidin to be a potent chemopreventive agent against renal carcinogenesis possibly by virtue of its antioxidant properties and by modulation of multiple molecular pathways.

Experimental and molecular pathology. 2015 Nov 10 [Epub ahead of print]

Aisha Siddiqi, Syed Kazim Hasan, Sana Nafees, Summya Rashid, Bano Saidullah, Sarwat Sultana

Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110068, India. , Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India. , Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India. , Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India. , Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110068, India. , Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India.  

PubMed