MicroRNA-20b-5p functions as a tumor suppressor in renal cell carcinoma by regulating cellular proliferation, migration and apoptosis

Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and is associated with a poor prognosis due to a lack of early‑warning signs, protean clinical manifestations, and resistance to radiotherapy and chemotherapy.

Recently, increasing evidence has suggested that microRNAs (miRNAs) are involved in the proliferation, invasion and apoptosis of various types of human cancer cells. In a previous study, miRNA expression profiles from renal cell carcinoma (RCC) revealed that expression of miR‑20b‑5p was significantly downregulated in RCC tissues. The aim of this study was to investigate the expression and functional significance of miR‑20b‑5p in RCC. The expression of miR‑20b‑5p was quantified in 48 paired RCC tissues and cell lines, and compared with adjacent normal tissues and the 293T cell line by reverse transcription‑quantitative polymerase chain reaction. The functional impact of miR‑20b‑5p on cell proliferation, cell migration and apoptosis in the 786‑O and ACHN RCC cell lines, was determined by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, a scratch assay and flow cytometry. To the best of our knowledge, the present study was the first to reveal that miR‑20b‑5p was downregulated in RCC tissues and cell lines. It also demonstrated that upregulation of miR‑20b‑5p inhibited cellular migration and proliferation, and promoted cellular apoptosis, suggesting that miR‑20b‑5p functioned as a potential tumor suppressor. However, further studies are required to fully determine the effects of miR‑20b‑5p and the miR‑20b‑5p‑mediated molecular pathway in RCC and other types of cancer. In conclusion, these results imply that miR‑20b‑5p may be a biomarker for early detection and prognosis prediction, as well as a therapeutic target for RCC.

Molecular medicine reports. 2015 Dec 17 [Epub ahead of print]

Yifan Li, Duqun Chen, Lu Jin, Jiaju Liu, Zhengming Su, Yuchi Li, Yaoting Gui, Yongqing Lai

Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P. R. China. , Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P. R. China. , Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P. R. China. , Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P. R. China. , Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P. R. China. , The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P. R. China. , The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P. R. China. , Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P. R. China.

PubMed