Institute for Clinical and Economic Review: BCG Unresponsive Disease

The ICER Process

To address the importance of high-value care in the context of affordability and access, the Institute for Clinical and Economic Review (ICER) an organization whose mission is to conduct evidence-based reviews of health care interventions, independently reviews evidence, free from financial conflicts of interest, to understand an intervention’s ability to extend or improve life, a fair price based on clinical evidence, and how stakeholders can translate evidence into real-world insurance coverage to improve patient outcomes. The ICER process is multi-fold, rigorous, inclusive and systematic, based upon a Value Assessment Framework conducted in 5 steps.1

Written by: Yair Lotan, Jonathan L Wright, and Angela B Smith
References: 1. https://icer.org/our-approach/methods-process/
2. Girish S Kulkarni 1, Antonio Finelli, Neil E Fleshner, Michael A S Jewett, Steven R Lopushinsky, Shabbir M H Alibhai. Optimal management of high-risk T1G3 bladder cancer: a decision analysis. PLoS Med. 2007 Sep;4(9):e284.
3. Lerner SP, Bajorin DF, Dinney CP, Efstathiou JA, Groshen S, Hahn NM, Hansel D, Kwiatkowski D, O'Donnell M, Rosenberg J, Svatek R, Abrams JS, Al-Ahmadie H, Apolo AB, Bellmunt J, Callahan M, Cha EK, Drake C, Jarow J, Kamat A, Kim W, Knowles M, Mann B, Marchionni L, McConkey D, McShane L, Ramirez N, Sharabi A, Sharpe AH, Solit D, Tangen CM, Amiri AT, Van Allen E, West PJ, Witjes JA, Quale DZ. Summary and Recommendations from the National Cancer Institute's Clinical Trials Planning Meeting on Novel Therapeutics for Non-Muscle Invasive Bladder Cancer.. Bladder Cancer. 2016 Apr 27;2(2):165-202. doi: 10.3233/BLC-160053.PMID: 27376138
4. Svatek RS, Hollenbeck BK, Holmäng S, Lee R, Kim SP, Stenzl A, Lotan Y. The economics of bladder cancer: costs and considerations of caring for this disease. Eur Urol. 2014 Aug;66(2):253-62. doi: 10.1016/j.eururo.2014.01.006. Epub 2014 Jan 21.PMID: 24472711
5. Hu JC, Chughtai B, O'Malley P, Halpern JA, Mao J, Scherr DS, Hershman DL, Wright JD, Sedrakyan A. Perioperative Outcomes, Health Care Costs, and Survival After Robotic-assisted Versus Open Radical Cystectomy: A National Comparative Effectiveness Study.. Eur Urol. 2016 Jul;70(1):195-202. doi: 10.1016/j.eururo.2016.03.028. Epub 2016 Apr 28.PMID: 27133087

Intermittent Catheter Types

The number of catheter types and designs has increased with the advancement of new technology. This has added complexity to the catheterization process for both the nurse and the patient.
Written by: Diane K. Newman, DNP, ANP-BC, FAAN
References:
  1. Chartier-Kastler E, Amarenco G, Lindbo L, et al. (2013). A prospective, randomized, crossover, multicenter study comparing quality of life using compact versus standard catheters for intermittent self-catheterization. J Urol. 190(3):942-947.
  2. Cardenas, D. D., Moore, K. N., Dannels-McClure, A., et al. (2011). Intermittent catheterization with a hydrophilic-coated catheter delays urinary tract infections in acute spinal injury: A prospective randomised, multicenter trial. Physical Medicine and Rehabilitation, 3(5), 408–417.
  3. Christnsen, J., Ostri, P., Frimodt-moller, C., et al. (1987). Intravesical pressure changes during bladder drainage in patients with acute urinary retention. Urologia Internationalis, 42(3), 181–184.
  4. Christison K, Walter M, Wyndaele JJM, et al. (2018). Intermittent catheterization: The devil is in the details. J Neurotrauma. Feb 1. doi: 10.1089/neu.2017.5413doi
  5. DeFoor W, Reddy P, Reed M, et al. (2017). Results of a prospective randomized control trial comparing hydrophilic to uncoated catheters in children with neurogenic bladder. J Pediatr Urol. Aug;13(4):373.e1-373.e5. doi: 10.1016/j.jpurol.2017.06.003. 
  6. Goetz LL, Droste L, Klausner AP, Newman DK. (2018). Intermittent catheterization. In: D.K. Newman, E.S. Rovner, A.J. Wein, (Eds). Clinical Application of Urologic Catheters and Products. (pp. 47-77) Switzerland: Springer International Publishing
  7. Håkansson MA. (2014). Reuse versus single-use catheters for intermittent catheterization: what is safe and preferred? Review of current status. Spinal Cord. 52(7):511-516.
  8. Newman, D.K., New, P.W., Heriseanu, R. Petronis, S., Håkansson, J., Håkansson, M.A., & Lee, B.B. (2020). Intermittent catheterization with single- or multiple-reuse catheters: clinical study on safety and impact on quality of life. Int Urol Nephrol. Aug;52(8):1443-1451. doi: 10.1007/s11255-020-02435-9. 
  9. Newman DK. (2017). Devices, products, catheters, and catheter-associated urinary tract infections. In: Newman DK, Wyman JF, Welch VW, editors. Core Curriculum for Urologic Nursing. 1st Pitman (NJ): Society of Urologic Nurses and Associates, Inc; 2017. p.439-66.
  10. Newman DK, Willson MM. (2011). Review of intermittent catheterization and current best practices. Urol Nurs. Jan-Feb;31(1):12-28, 48; quiz 29. PubMed PMID: 21542441
  11. Rognoni C, Tarricone R. (2017). Intermittent catheterization with hydrophilic and non-hydrophilic urinary catheters: systematic literature review and meta-analyses. BMC Urol. 17(1):4.
  12. Shamout S, Biardeau X, Corcos J, Campeau L. (2017). Outcome comparison of different approaches to self-intermittent catheterization in neurogenic patients: a systematic review. Spinal Cord. 55(7):629-643.
  13. Sun AJ, Comiter CV, Elliott CS. (2018). The cost of a catheter: An environmental perspective on single-use clean intermittent catheterization. Neurourol Urodyn. 37(7):2204-2208.

Testicular Cancer Awareness Month: A Focus on Implications of Mental Health Among Testicular Cancer Survivors

In 2021, there will be an estimated 9,470 new cases of testicular cancer in the United States with an estimated 440 testis cancer-related deaths.1 Importantly, the vast majority of men with testis cancer, even in advanced stages, are cured as a result of the success of high dose chemotherapy regimens that are tolerated by this typically young and healthy patient population. Given both the relatively young age at diagnosis and overall high survival rates, there has been a much needed and welcome focus on survivorship for testicular cancer patients.

Written by: Zachary Klaassen, MD MSc
References: 1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33.
2. Kerns SL, Fung C, Monahan PO, et al. Cumulative Burden of Morbidity Among Testicular Cancer Survivors After Standard Cisplatin-Based Chemotherapy: A Multi-Institutional Study. J Clin Oncol. 2018;36(15):1505-1512.
3. Fung C, Sesso HD, Williams AM, et al. Multi-Institutional Assessment of Adverse Health Outcomes Among North American Testicular Cancer Survivors After Modern Cisplatin-Based Chemotherapy. J Clin Oncol. 2017;35(11):1211-1222.
4. Sineath RC, Mehta A. Preservation of Fertility in Testis Cancer Management. Urol Clin North Am. 2019;46(3):341-351.
5. Patel HD, Srivastava A, Alam R, et al. Radiotherapy for stage I and II testicular seminomas: Secondary malignancies and survival. Urol Oncol. 2017;35(10):606 e601-606 e607.
6. Abouassaly R, Fossa SD, Giwercman A, et al. Sequelae of treatment in long-term survivors of testis cancer. Eur Urol. 2011;60(3):516-526.
7. Chovanec M, Lauritsen J, Bandak M, et al. Late adverse effects and quality of life in survivors of testicular germ cell tumour. Nat Rev Urol. 2021;18(4):227-245.
8. van den Belt-Dusebout AW, Nuver J, de Wit R, et al. Long-term risk of cardiovascular disease in 5-year survivors of testicular cancer. J Clin Oncol. 2006;24(3):467-475.
9. Fung C, Dinh PC, Fossa SD, Travis LB. Testicular Cancer Survivorship. J Natl Compr Canc Netw. 2019;17(12):1557-1568.
10. Raphael MJ, Gupta S, Wei X, et al. Long-Term Mental Health Service Utilization Among Survivors of Testicular Cancer: A Population-Based Cohort Study. J Clin Oncol. 2021;39(7):779-786.
11. Thorsen L, Nystad W, Stigum H, et al. The association between self-reported physical activity and prevalence of depression and anxiety disorder in long-term survivors of testicular cancer and men in a general population sample. Support Care Cancer. 2005;13(8):637-646.
12. Soleimani M, Kollmannsberger C, Bates A, Leung B, Ho C. Patient-reported psychosocial distress in adolescents and young adults with germ cell tumours. Support Care Cancer. 2021;29(4):2105-2110.
13. Kreiberg M, Bandak M, Lauritsen J, et al. Psychological stress in long-term testicular cancer survivors: a Danish nationwide cohort study. J Cancer Surviv. 2020;14(1):72-79.
14. Smith AB, Rutherford C, Butow P, et al. A systematic review of quantitative observational studies investigating psychological distress in testicular cancer survivors. Psychooncology. 2018;27(4):1129-1137.
15. Misono S, Weiss NS, Fann JR, Redman M, Yueh B. Incidence of suicide in persons with cancer. J Clin Oncol. 2008;26(29):4731-4738.
16. Zaorsky NG, Zhang Y, Tuanquin L, Bluethmann SM, Park HS, Chinchilli VM. Suicide among cancer patients. Nat Commun. 2019;10(1):207.
17. Gunnes MW, Lie RT, Bjorge T, et al. Suicide and violent deaths in survivors of cancer in childhood, adolescence and young adulthood-A national cohort study. Int J Cancer. 2017;140(3):575-580.
18. Tuinman MA, Hoekstra HJ, Fleer J, Sleijfer DT, Hoekstra-Weebers JE. Self-esteem, social support, and mental health in survivors of testicular cancer: a comparison based on relationship status. Urol Oncol. 2006;24(4):279-286.
19. De Padova S, Rosti G, Scarpi E, et al. Expectations of survivors, caregivers and healthcare providers for testicular cancer survivorship and quality of life. Tumori. 2011;97(3):367-373.
20. De Padova S, Casadei C, Berardi A, et al. Caregiver Emotional Burden in Testicular Cancer Patients: From Patient to Caregiver Support. Front Endocrinol (Lausanne). 2019;10:318.

Will Immunotherapy Work as Salvage Therapy for Patients with Testicular Germ Cell Tumors?

It’s now been 3.5 years since I last wrote anything about testicular germ cell tumors and ongoing clinical trials.1  Although we still cure most men afflicted with this disease, we have not made any major new therapeutic advancements since I wrote that last article.  Approximately, 15-20% of patients with metastatic germ cell tumors will relapse following initial chemotherapy.  Even in this situation, approximately 50% can still be cured with salvage treatments, either with more conventional cisplatin-based chemotherapy or with high-dose chemotherapy and autologous stem cell rescue.2-4

The Rapidly Evolving Role of PSMA In Prostate Cancer Diagnostics And Therapeutics

Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein which functions as a zinc metalloenzyme and is found on prostatic epithelium. In normal prostate tissue, PSMA expression and localization focuses on the cytoplasm and apical side of the epithelium surrounding prostatic ducts. However, during prostate carcinogenesis, PSMA is transferred to the luminal surface of the ducts. 

Written by: Zachary Klaassen, MD MSc
References: 1. Heindel W, Gubitz R, Vieth V, Weckesser M, Schober O, Schafers M. The diagnostic imaging of bone metastases. Dtsch Arztebl Int. 2014;111(44):741-747.
2. Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: a meta-analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy. Eur Radiol. 2011;21(12):2604-2617.
3. Network NCC. NCCN Clinical Practice Guideslines in Oncology: Prostate Cancer - Version 1.2019. 2019.
4. Li R, Ravizzini GC, Gorin MA, et al. The use of PET/CT in prostate cancer. Prostate cancer and prostatic diseases. 2018;21(1):4-21.
5. Wondergem M, van der Zant FM, van der Ploeg T, Knol RJ. A literature review of 18F-fluoride PET/CT and 18F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun. 2013;34(10):935-945.
6. Nanni C, Zanoni L, Pultrone C, et al. (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging. 2016;43(9):1601-1610.
7. Calais J, Ceci F, Eiber M, et al. (18)F-fluciclovine PET-CT and (68)Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. The lancet oncology. 2019;20(9):1286-1294.
8. Zippel C, Ronski SC, Bohnet-Joschko S, Giesel FL, Kopka K. Current Status of PSMA-Radiotracers for Prostate Cancer: Data Analysis of Prospective Trials Listed on ClinicalTrials.gov. Pharmaceuticals (Basel). 2020;13(1).
9. Eiber M, Weirich G, Holzapfel K, et al. Simultaneous (68)Ga-PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer. European urology. 2016;70(5):829-836.
10. Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020;395(10231):1208-1216.
11. Morris MJ, Rowe SP, Gorin MA, et al. Diagnostic Performance of (18)F-DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase 3, Multicenter Study. Clinical cancer research : an official journal of the American Association for Cancer Research. 2021.
12. Pienta KJ, Gorin MA, Rowe SP, et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate-Specific Membrane Antigen PET/CT with (18)F-DCFPyL in Prostate Cancer Patients (OSPREY). The Journal of urology. 2021:101097JU0000000000001698.
13. Sartor O. Isotope Therapy for Castrate-Resistant Prostate Cancer: Unique Sequencing and Combinations. Cancer J. 2016;22(5):342-346.
14. Ye X, Sun D, Lou C. Comparison of the efficacy of strontium-89 chloride in treating bone metastasis of lung, breast, and prostate cancers. J Cancer Res Ther. 2018;14(Supplement):S36-S40.
15. James N, Pirrie S, Pope A, et al. TRAPEZE: a randomised controlled trial of the clinical effectiveness and cost-effectiveness of chemotherapy with zoledronic acid, strontium-89, or both, in men with bony metastatic castration-refractory prostate cancer. Health technology assessment. 2016;20(53):1-288.
16. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. The New England journal of medicine. 2013;369(3):213-223.
17. Henriksen G, Breistol K, Bruland OS, Fodstad O, Larsen RH. Significant antitumor effect from bone-seeking, alpha-particle-emitting (223)Ra demonstrated in an experimental skeletal metastases model. Cancer research. 2002;62(11):3120-3125.
18. Bruland OS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? Clinical cancer research : an official journal of the American Association for Cancer Research. 2006;12(20 Pt 2):6250s-6257s.
19. Sadaghiania M., Sheikhbahaeia S., Werner R., et al., A Systematic Review and Meta-analysis of the Effectiveness and Toxicities of Lutetium-177–labeled Prostate-specific Membrane Antigen–targeted Radioligand Therapy in Metastatic Castration-Resistant Prostate Cancer. European Urology, 2021.
20. Hofman MS, Emmett L, Sandhu S, et al. [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021;397(10276):797-804.

Bladder Tumor Subtype Commitment Occurs in Carcinoma In-Situ Driven by Key Signaling Pathways Including ECM Remodeling - Beyond the Abstract

It is profound that despite years of intensive therapeutic efforts, a staggering 50-60% of patients with muscle-invasive urothelial bladder cancer will have a local or distant disease recurrence within five years with only limited therapeutic options. Therefore, it is imperative to understand how these tumors develop and continue efforts to identify new therapeutic targets. Because basal and luminal tumor subtypes of invasive bladder tumors have significant prognostic and predictive impacts for patients we sought to answer the question: When does subtype commitment occur and which signaling gene pathways are important during the process of tumorigenesis?
Written by: Markus Eckstein, MD, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
References: 1. Wullweber, Adrian, Reiner Strick, Fabienne Lange, Danijel Sikic, Helge Taubert, Sven Wach, Bernd Wullich et al. "Bladder tumor subtype commitment occurs in carcinoma in-situ driven by key signaling pathways including ECM remodeling." Cancer Research (2021).

Upper Tract Urothelial Carcinoma: Updates in Local Treatment, Nephron Sparing Approaches, and Perioperative Chemotherapy

Upper tract urothelial carcinoma (UTUC) is a rare malignancy with an incidence of 1 case per 50,000 people in developed countries. Because symptoms are often non-specific, there are delays in presentation and diagnosis and, as a result, more than half of patients present with muscle-invasive or locally advanced disease.  The gold standard treatment for localized UTUC has been radical nephroureterectomy followed by surveillance.1 However, as with bladder urothelial carcinoma, UTUC has a range of primary tumor aggressiveness, ranging from relatively indolent, superficial low-grade disease to the aforementioned locally invasive disease. Thus, not all patients may require nephroureterectomy. Further, due to renal dysfunction or other medical comorbidities, patients may not be fit for radical surgery. 

Written by: Zachary Klaassen, MD, MSc
References:

1. Roupret M, Babjuk M, Comperat E, et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2017 Update. European urology. 2018;73(1):111-122.
2. Petros FG, Li R, Matin SF. Endoscopic Approaches to Upper Tract Urothelial Carcinoma. Urol Clin North Am. 2018;45(2):267-286.
3. Samson P, Smith AD, Hoenig D, Okeke Z. Endoscopic Management of Upper Urinary Tract Urothelial Carcinoma. J Endourol. 2018;32(S1):S10-S16.
4. Cutress ML, Stewart GD, Zakikhani P, Phipps S, Thomas BG, Tolley DA. Ureteroscopic and percutaneous management of upper tract urothelial carcinoma (UTUC): systematic review. BJU Int. 2012;110(5):614-628.
5. Williams SK, Denton KJ, Minervini A, et al. Correlation of upper-tract cytology, retrograde pyelography, ureteroscopic appearance, and ureteroscopic biopsy with histologic examination of upper-tract transitional cell carcinoma. J Endourol. 2008;22(1):71-76.
6. Raman JD, Park R. Endoscopic management of upper-tract urothelial carcinoma. Expert Rev Anticancer Ther. 2017;17(6):545-554.
7. Grasso M, Fishman AI, Cohen J, Alexander B. Ureteroscopic and extirpative treatment of upper urinary tract urothelial carcinoma: a 15-year comprehensive review of 160 consecutive patients. BJU Int. 2012;110(11):1618-1626.
8. Motamedinia P, Keheila M, Leavitt DA, Rastinehad AR, Okeke Z, Smith AD. The Expanded Use of Percutaneous Resection for Upper Tract Urothelial Carcinoma: A 30-Year Comprehensive Experience. J Endourol. 2016;30(3):262-267.
9. Donin NM, Duarte S, Lenis AT, et al. Sustained-release Formulation of Mitomycin C to the Upper Urinary Tract Using a Thermosensitive Polymer: A Preclinical Study. Urology. 2017;99:270-277.
10. Knoedler JJ, Raman JD. Intracavitary therapies for upper tract urothelial carcinoma. Expert Rev Clin Pharmacol. 2018;11(5):487-493.
11. Birtle A, Johnson M, Chester J, et al. Adjuvant chemotherapy in upper tract urothelial carcinoma (the POUT trial): a phase 3, open-label, randomised controlled trial. Lancet. 2020. 
12. Sternberg CN, Skoneczna I, Kerst JM, et al. Immediate versus deferred chemotherapy after radical cystectomy in patients with pT3-pT4 or N+ M0 urothelial carcinoma of the bladder (EORTC 30994): an intergroup, open-label, randomised phase 3 trial. Lancet Oncol. 2015;16(1):76-86. 
13.International Collaboration of T, Medical Research Council Advanced Bladder Cancer Working P, European Organisation for R, et al. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results of the BA06 30894 trial. J Clin Oncol. 2011;29(16):2171-2177.
14. Advanced Bladder Cancer Meta-analysis C. Adjuvant chemotherapy in invasive bladder cancer: a systematic review and meta-analysis of individual patient data Advanced Bladder Cancer (ABC) Meta-analysis Collaboration. Eur Urol. 2005;48(2):189-199; discussion 199-201.
15. Birtle A, Chester J, Jones RJ, et al. Updated outcomes of POUT: A phase III randomized trial of peri-operative chemotherapy versus surveillance in upper tract urothelial cancer (UTUC). J Clin Oncol. 2021;39(no. 6_suppl):455-455.

Improving Prostate Cancer Early Detection with Biomarkers in Primary Care

The COVID-19 pandemic has resulted in numerous physical and psychological adjustments for clinicians, patients, and their families—wearing personal protective equipment, adopting telemedicine, adjusting clinic workflow, etc. The ensuing uncertainty and attendant anxiety from the fluidity of information and healthcare policy debate has augmented the need for enhanced communication and thoughtfulness for healthcare providers.  For urologic patient care, we strive to surmount the ever-evolving challenges of the COVID-19 pandemic by incorporating strategies to avoid the infection while protecting and prioritizing patient care. Specifically, as we assess the optimization of prostate cancer detection and diagnosis, we should identify men at risk for clinically significant cancer who mainly first present within the primary care setting.
Written by: Neal D. Shore, MD, FACS, and Michael S. Cookson, MD, MMHC

The Ongoing Evolution of a Field: Advances In First Line Therapy For Metastatic Clear Cell Renal Cell Carcinoma

Introduction

Cancers of the kidney and renal pelvis (when considered in aggregate despite different histology) represent the 6th most common newly diagnosed tumors in men and 8th most common in women in the United States in 20201, representing an estimated 73,750 new diagnoses and 14,830 deaths. The vast majority of these cancers will be renal parenchymal tumors with renal cell carcinoma (RCC) comprising the large majority with clear cell renal cell carcinoma (ccRCC) is the most common histologic subtype of renal cell carcinoma. Due to its prevalence, the vast majority of advances in systemic therapies for RCC have been made for patients with ccRCC. However, there have been important recent advances in treatment for patients with non-clear cell renal cell carcinomas (nccRCC) as well in recent years.

Despite ongoing stage migration as a result of widespread use of axial abdominal imaging for non-specific abdominal complaints2, a large proportion (up to 35%) of patients present with advanced disease, including metastases3. Historically, metastatic RCC has been early uniformly fatal, with 10-year survival rates less than 5%4. However, there has been transformational change in this disease space over the past fifteen years and, with newer immunotherapy-based approaches, the potential for long-term cure is something that may be considered. Certainly, a significantly longer natural history is feasible given available therapeutic options.

The Historical and Near Past

The immunologically active nature of RCC has been recognized for many years and, as a result, modulators of the immune system were among the first therapeutic targets for advanced ccRCC: interferon-alfa and interleukin-2 were among the only available treatment options prior to 2005. However, despite a response rate between 10 to 15%5, even among patients treated at a center of excellence, median overall survival was only 30 months in favorable risk patients, 14 months in intermediate risk patients and 5 months in poor risk patients6. Interleukin-2 had similar response rates to interferon-based therapies (~15 to 20%)7, but distinctly had evidence of durable complete responses in approximately 7 to 9% of patients8. This observation led to the U.S. Food and Drug Administration (FDA) approval of high-dose IL-2 in 1992. However, IL-2 is associated with significant toxicity which has limited its widespread use.

The more recent past includes the “targeted therapy” era which began with the introduction of sorafenib in 2005 followed by sunitinib in 2006 and temsirolimus in 2007, along with a number of other agents in the years that followed.

figure-1-treatment-landscape-RCC-20212x.jpg

These treatments were developed based on work into the molecular biology underlying ccRCC through targeting of the vascular endothelial growth factor (VEGF) pathway and mammalian target of rapamycin (mTOR). This pathway plays a key role in regulating HIF-α, thus modulating the pathway between abnormalities in VHF and proliferation. 

While no longer used as monotherapy in the first-line setting, bevacizumab, a humanized monoclonal antibody against VEGF-A, was the first inhibitor of the VEGF pathway used in clinical trials. In head-to-head trials against interferon-alfa, the addition of bevacizumab to interferon resulted in significant improvements in response rate and progression-free survival9,10.

In contrast, tyrosine-kinase inhibitors (TKIs) quickly became standard of care, used as first-line monotherapy. For nearly 15 years, sunitinib was the standard of care, and as such, it has formed the control comparison for testing of newer approaches. As with bevacizumab, TKIs also target the VEGF pathway, through inhibition of a combination of VEGFR-2, PDGFR-β, raf-1 c-Kit, and Flt3 (sunitinib and sorafenib). As alluded to above, sorafenib was one the first molecularly targeted agents clinically available, in 2006, based on demonstrated biologic activity in ccRCC. However, despite FDA approval, sorafenib was quickly supplanted by sunitinib as a first-line VEGF inhibitor. Sunitinib was first tested among patients who had previously received cytokine therapy and then, in a pivotal phase III trial, demonstrated superiority (both in terms of progression free survival and quality of life) in a head-to-head comparison with interferon-α11. Since the approval of sunitinib and sorafenib, there has been development and subsequent approval of many other tyrosine kinase inhibitors. For the most part, the goal of these agents has been to reduce the toxicity of VEGF inhibitors while retaining oncologic efficacy. Comparative data of pazopanib and sunitinib have demonstrated non-inferior oncologic outcomes with decreased toxicity among patients receiving pazopanib12. Axitinib was evaluated first as second-line therapy13 and then in the first-line setting compared to sorafenib14. Finally, tivozanib has been compared to sorafenib among patients who had not previously received VEGF or mTOR-targeting therapies. While this study demonstrated tivozanib’s activity, it was not FDA approved and it therefore not used.

Most recently, cabozantinib, a multikinase inhibitor (acting on tyrosine kinases including MET, VEGF receptors), and TAM family of kinases (TYRO3, MER, and AXL), has been approved for the first-line treatment of mRCC based on the phase II CABOSUN trial. In the initial report of this study, cabozantinib demonstrated significantly improved progression free survival (HR 0.66, 95% CI 0.46 to 0.95), compared to sunitinib in the first line treatment of patients with intermediate or poor risk mRCC15. In an updated analysis utilizing independent PFS review, comparable PFS results were observed (HR 0.48, 95% CI 0.31 to 0.74)16. However, this trial has yet to demonstrate an overall survival benefit to cabozantinib compared to sunitinib (HR 0.80, 95% CI 0.53 to 1.21). 

Mammalian target of rapamycin (mTOR) inhibitors were developed in parallel to VEGF inhibitors. Unlike TKIs, for the most part, these agents have not been used in first-line therapy, though temsirolimus has been used in patients with poor-risk disease based on a comparison or  temsirolimus, interferon, and the combination in 626 patients with pre-defined poor risk metastatic RCC who had not previously received systemic therapy17. Patients who received temsirolimus had significantly improved overall survival compared to those receiving interferon-alfa (HR 0.73, 95% CI 0.58 to 0.92). 

In addition to the recent, though now well-established, role of immunotherapy in patients with mRCC, there remains ongoing interest in the development of targeted therapies based on our understanding of mRCC biology. Notably, on the basis of an understanding of ccRCC carcinogenesis, the potent, selective, small molecular HIF-2α inhibitor belzutifan (MK-6482) was granted priority review by the FDA for patients with von Hippel-Lindau (VHL) associated RCC. This approval was provided based on the phase II Study-004 trial among patients with renal tumors not requiring surgical intervention (NCT03401788). In data presented at ASCO-GU 2021, treatment with belzutifan was associated with an overall response rate of 36.1% (95% confidence interval 24.2-49.4%). MK-6482 also demonstrated benefits in non-RCC tumors including pancreatic lesions and central nervous systemic hemangioblastomas. This novel therapy was relatively well tolerated with 13% experiencing grade 3 treatment-related adverse events and none experiencing grade 4 or 5 treatment-related adverse events. While this approval was based on treatment in patients with renal masses not requiring surgical intervention, there are ongoing phase III trials of belzutifan both as monotherapy and in combination regimes as first-line treatment for advanced ccRCC.

The Return of Immunotherapy for Advanced RCC

While the cytokine era faded with the introduction of targeted therapies, the immunologic basis for mRCC treatment re-emerged around 2015 with the use of nivolumab monotherapy for patients who had previously received systemic therapy.

Published now more than 3 years ago, CheckMate 214 was the first study to demonstrate a benefit for immune checkpoint inhibitors in the first-line treatment of mRCC, showing an overall survival (OS) benefit for first-line nivolumab + ipilimumab vs sunitinib18. This trial randomized 1096 patients to the combination immunotherapy approach of nivolumab + ipilimumab (550 patients) or sunitinib (546 patients). Most patients had intermediate or poor risk disease (n=847). OS was significantly improved in the overall patient population; however, stratified analyses provide more nuanced results with benefits restricted to those with intermediate or poor-risk RCC while, in patients with favorable risk disease, progression-free survival and overall response rate were higher among patients who received sunitinib. 

Since the initial publication, there have been a number of follow-up and subgroup analyses from CheckMate 214. Long-term follow-up among patients with at least four years of follow-up was reported at ESMO 2020 by Dr. Albiges. Among these patients, in the intention-to-treat population, results were very similar to the initial analysis previously published with the combined nivolumab + ipilimumab approach continuing to demonstrate superiority (HR 0.69, 95% CI 0.59 to 0.81). In sub-groups defined according to IMDC criteria, those with intermediate or poor risk had improved survival with nivolumab/ipilimumab (HR 0.65, 95% CI 0.54 to 0.78) while there continued to be no appreciable difference between treatment approaches among those with favorable risk disease (HR 0.93, 95% CI 0.62 to 1.40). Presented at the same meeting, Dr. Regan and colleagues used these long-term follow-up data to assess a novel outcome metric, treatment-free survival with and without toxicity. The rationale for this approach is that conventional measures (OS, rPFS, etc) may not fully capture the effects on immuno-oncology (IO) approaches, particularly patients may have long periods of disease control without subsequent anticancer therapy following discontinuation of IO regimes. Thus, the authors defined treatment free survival (TFS), as the time between protocol therapy cessation and subsequent systemic therapy or death. They stratified this as TFS with or without toxicity by counting the number of days with ≥1 grade ≥3 treatment-related adverse events reported. As of 42-months of follow-up, 56% of patients randomized to nivolumab + ipilimumab and 47% of those randomized to sunitinib were alive with 13% and 7%, respectively, remaining on their original therapy. A further 31% of patients randomized to nivolumab + ipilimumab and 12% of those randomized to sunitinib were surviving free of subsequent, second line therapy. 42-month restricted TFS was higher for patients randomized to nivolumab + ipilimumab (7.8 months) than those randomized to sunitinib (3.3 months). Toxicity-free TFS was 7.1 months and 3.0 months, respectively. In each case, the 95% confidence interval of the difference in median TFS excluded unity demonstrating that these are significant differences. Unlike the differences in PFS and OS which appear to be restricted to patients with intermediate and poor risk disease, Dr. Regan and colleagues showed that the benefits in TFS were dramatic in patients with both IMBC intermediate and poor risk disease (median TFS 6.9 vs 3.1 months) and favourable risk disease (median TFS 11.0 vs 3.7 months).

One of the final important subgroup analyses comes from Dr. Escudier and colleagues who demonstrated that the objective response rate was stable across increasing numbers of IMDC risk factors (from zero to 6) for those who received nivolumab and ipilimumab, while the ORR in patients treated with sunitinib decreased with an increasing number of IMDC risk factors19.

The BIONIKK trial, an open-label, phase II biomarker-driven randomized trial, was also presented as ESMO 2020. This trial relied upon previous analyses which demonstrated that immune and angiogenic signatures can allow for the differentiation of four groups of patients (ccrcc1-4) with immune and angiogenic high/low features, which could allow better identification of responders to either nivolumab, nivolumab + ipilimumab or TKI. ccrcc1 “immune-low” and ccrcc4 “immune-high” tumors have been associated with the poorest outcomes, whereas ccrcc2 “angio-high” and ccrcc3 “normal-like” tumors have been associated with the best outcomes. In this biomarker driven trial, patients with ccrcc1 and ccrcc4 signatures were randomized to nivolumab versus nivolumab + ipilimumab, whereas those with ccrcc2 and ccrcc3 signatures were randomized to receive nivolumab + ipilimumab versus TKI. As a phase II trial, the primary endpoint for this study was objective response rate (ORR, RECIST1.1) per treatment and group. Secondary endpoints included PFS, OS, and tolerability. 202 patients were randomized of a targeted 187. Among patients with the ccrcc1 signature, objective response rates were higher among those who received combination therapy with nivolumab + ipilimumab (39.4%; 6.1% complete response rate) than those who received nivolumab alone (20.7%; 0% complete response rate) whereas among those with a ccrcc4 signature, objective response rates were 50.3% in those receiving the combination approach (11.8% complete response rate) as compared to 50% in those receiving nivolumab alone (7.1%). Median progression free survival among patients with the ccrcc1 signature was 8.0 months in those receiving nivolumab + ipilimumab and 4.6 months among those receiving nivolumab alone. In the ccrcc4 group, median progression-free survival was 12.2 months in the combination arm and 7.8 months in the nivolumab monotherapy arm. In patients with the ccrcc2 signature, objective response rates were 48.3% in the nivolumab + ipilimumab arm (13.8% complete response rate) and 53.8% in the TKI arm (0% complete response rate) whereas among patients with the ccrcc3 signature, 25% receiving nivolumab + ipilimumab had objective responses (0% complete response rate) and 0% receiving TKI had objective response.  These are the first randomized data based on molecular risk group assessment to guide first-line therapy in metastatic ccRCC. In particular, among patients with the ccrcc4 signature, use of combination therapy may not be required and thus ipilimumab may be spared.

In terms of first line therapy, immunotherapy approaches have predominately focused on combination therapy approaches. However, in the past month, data regarding the use of pembrolizumab monotherapy has emerged20. This phase II single-arm study demonstrated an objective response rate of 36.4% among 110 enrolled patients with a median progression-free survival of 7.1 months (95% CI 5.6 to 11.0 months). Clearly, compared to the data highlighted both above from CheckMate214 and in the sections that follow, these results are inferior to combination therapy.

Combination Approaches: Targeted Therapy and Immunotherapy

Combination therapy has been well established in the treatment of advanced RCC, including the use of interferon-alfa and bevacizumab9,10. Following the data from CheckMate 214 demonstrating the role for immune checkpoint blockade in advanced RCC, data began to emerge on the combination of targeted therapies with checkpoint inhibitors. 

The first of these studies was IMmotion151, first presented at GU ASCO 2018 and subsequently published, which compared first-line atezolizumab + bevacizumab vs sunitinib among 915 patients with previously untreated metastatic RCC21. The combined approach demonstrated a significant benefit in progression-free survival (11.2 months versus 7.7 months; HR 0.74, 95% CI 0.57 to 0.96) among the whole cohort of patients and had lower rates of significant (grade 3-4) adverse events (40% vs 54%). 

Subsequently, further combination approaches have been approved on the basis of published phase III trials, including pembrolizumab + axitinib (KEYNOTE-426) and avelumab + axitinib (JAVELIN Renal 101). Additionally, the recent presentation and publication of CheckMate-9ER and CLEAR have added the combination of nivolumab + cabozantinib and lenvatinib + pembrolizumab, respectively, to the armamentarium of first line mRCC treatment.

In KEYNOTE-426, 861 patients with metastatic clear cell RCC, predominately with intermediate or poor risk disease, who had not previously received systemic therapy were randomized to pembrolizumab + axitinib or sunitinib and followed for the co-primary endpoints of overall survival and progression free survival22. While median OS was not reached, patients who received pembrolizumab + axitinib had improved OS (HR 0.53, 95% CI 0.38 to 0.74) and progression free survival (HR 0.69, 95% CI 0.57 to 0.84), as well as overall response rate. These results were consistent across subgroups of demographic characteristics, IMDC risk categories, and PD-L1 expression level. Grade 3 to 5 adverse events were somewhat more common among patients getting pembrolizumab and axitinib, though rates of discontinuation were lower. 

Similarly, JAVELIN Renal 101 randomized 886 patients to avelumab + axitinib or sunitinib23. Again, the preponderance of patients had IMDC intermediate or poor risk disease. In this analysis the primary endpoints were PFS and OS in patients with PD-L1 positive tumors. Notably, 560 of the 886 patients had PD-L1 positive tumors. Among the PD-L1 positive subgroup, progression free survival (HR 0.61, 95% CI 0.47 to 0.79) was improved in patients receiving avelumab + axitinib compared to sunitinib while OS did not significantly differ (HR 0.82, 95% CI 0.53 to 1.28). In the overall study population, progression-free survival was similarly improved, as compared to the PD-L1 positive population (HR 0.69, 95% CI 0.56 to 0.84). 

Third, in data initially presented at ESMO 2020 and published in February 2021, the CheckMate-9ER trial (NCT03141177), randomized 651 patients in a 1:1 fashion to nivolumab + cabozantinib or sunitinib, in the first-line treatment of patients with advanced or metastatic renal cell carcinoma, with randomization was stratified by IMDC risk score, tumor PD-L1 expression, and region. The primary outcome was progression-free survival with overall survival, objective response rate, and toxicity comprising important secondary outcomes. Over a median follow-up of 18 months, median progression-free survival was significantly longer among those randomized to nivolumab + cabozantinib (16.6 months) than those randomized to sunitinib (8.3 months), with a relative difference of 49% (HR 0.51, 95% CI 0.41 to 0.64) as was OS (medians not reached; HR 0.60, 98.89% CI 0.40 to 0.89). Notably, these benefits were seen consistently across pre-specified subgroups defined according to IMDC risk categories and PD-L1 expression. Any grade treatment related adverse events were common in both groups: 96.6% among those receiving nivolumab + cabozantinib and 93.1% among those receiving sunitinib. High grade events (grade 3 or greater) were somewhat higher among those receiving nivolumab + cabozantinib (60.6% vs 50.9%). One grade 5 event occurred in the nivolumab + cabozantinib arm while 2 occurred in the sunitinib treated group. Notably, quality of life was maintained for those receiving nivolumab + cabozantinib while there was a decline in quality of life among those receiving sunitinib. 

The fourth kinase inhibitor and immune checkpoint inhibitor combination is lenvatinib and pembrolizumab, based on the CLEAR study presented at ASCO-GU 2021 and simultaneously published24. As with the other three trials, CLEAR enrolled patients with previously untreated advanced RCC. Unlike the other trials, this was a three-arm randomization in a 1:1:1 fashion to lenvatinib 20 mg orally once daily + pembrolizumab 200 mg IV every 3 weeks; or lenvatinib 18 mg + everolimus 5 mg orally once daily; or sunitinib 50 mg orally once daily (4 weeks on/2 weeks off in 6-weekly cycles). The authors assessed the primary endpoint of progression-free survival by Independent Review Committee per RECIST v1.1 with key secondary endpoints including OS, objective response rate (ORR) and safety. The authors randomized 1069 patients, 355 who received lenvatinib and pembrolizumab, 357 who received lenvatinib and everolimus, and 357 who received sunitinib. The baseline characteristics of the study population were in keeping with those observed in other first-line mRCC trials. Notably, intermediate and poor risk disease comprised just over 70% of the cohort. Over a median follow-up of 27 months, PFS was significantly improved among patients receiving lenvatinib and pembrolizumab (median 24 months) vs sunitinib (median 9 months; HR 0.39, 95% CI 0.32–0.49) and among patients receiving lenvatinib and everolimus (median 15 months) vs sunitinib (HR 0.65, 95% CI 0.53–0.80). The benefit of lenvatinib and pembrolizumab versus sunitinib with respect to progression-free survival was consistent across many subgroups, comprising age, sex, geographic region, PD-L1 expression, IMDC risk group, prior nephrectomy, and sarcomatoid features. Further, OS was significantly longer among patients who received lenvatinib and pembrolizumab compared to sunitinib (HR 0.66, 95% CI 0.49–0.88), whereas there was no significant difference in OS for patients receiving lenvatinib and everolimus compared to sunitinib (HR 1.15, 95% CI 0.88–1.50). As with progression-free survival, these findings were consistent across all relevant tested subgroups for the comparison of lenvatinib and pembrolizumab, except patients with favorable risk group. Grade ≥3 treatment-related adverse events occurred in 72% of pts in the lenvatinib and pembrolizumab arm and 73% of pts in the lenvatinib and everolimus arm compared with 59% of pts in the sunitinib arm.

While not yet ready for clinical practice, interesting data from COSMIC-021, a multicenter phase 1b study, evaluating the combination of cabozantinib + atezolizumab in various solid tumors (NCT03170960), including first-line treatment of clear cell RCC, was presented at ESMO 2020. Cabozantinib, a standard-of-care for the treatment of advanced RCC, is potentially particularly well suited to combination therapy with immune checkpoint inhibitors as it promotes an immune-permissive environment which may enhance response to immune checkpoint inhibitors. In combination with immune checkpoint inhibitors, cabozantinib has shown promising activity for other tumor types including urothelial carcinoma, castration-resistant prostate cancer, lung cancer, and hepatocellular carcinoma. The ccRCC subset of the COSMIC-021 trial included 10 patients in the dose escalation stage and 60 in the expansion stage of the study. Patients were enrolled sequentially to receive atezolizumab 1200 mg IV every three weeks with either cabozantinib 40 mg (dose level 40 [DL40], n=34) or cabozantinib 60 mg (DL60, n=36) PO daily in each stage as first line therapy. The primary endpoint for this trial is the ORR per RECIST v1.1 by investigator, the secondary endpoint was safety, and exploratory endpoints include PFS and correlation of biomarkers with outcomes. For DL40, the ORR was 53% (80% CI 41-65), with one complete response (3%) and 17 partial responses (50%), the disease control rate was 94%, duration of response was not reached (range: 12.4 months to not reached), and the median time to objective response was 1.4 months (range: 1-19). For DL60, the ORR was 58% (80% CI 46-70), with four complete responses (11%) and 17 partial responses (47%), the disease control rate was 92%, the median duration of response was 15.4 months (range: 8.1 to not reached), and median time to objective response was 1.5 months (range: 1-7). For DL40, the median PFS was 19.5 months (95% CI 11.0 to not reached) compared to 15.1 months (95% CI 8.2-22.3) for DL60. This approach is currently being further investigated in the CONTACT-03 trial (NCT04338269), a phase III RCT comparing atezolizumab + cabozantinib to cabozantinib alone in patients who had previously received immune checkpoint therapy. 

Non-Clear Cell Histology

In general, randomized trials in advanced RCC have focused on patients with clear cell histology. As a result, there have been little direct data to guide care and we have had to rely on extrapolation from data derived among patients with clear cell histology. However, retrospective data have supported the activity of cabozantinib monotherapy in patients with advanced non-clear cell disease25. At ESMO 2020, Dr. McGregor and colleagues reported a prospective evaluation of the use of cabozantinib + atezolizumab in a subcohort of patients with non-clear cell histology the COSMIC-031 trial. Notably, in this cohort, patients were allowed up to one previously line of TKI (but not previous checkpoint inhibitor therapy or cabozantinib). At the time of data cut-off, 30 patients had been enrolled and followed for a median of 13.0 months. The cohort included 15 patients with papillary, 7 patients with chromophobe, and 8 patients with other histology. Five patients had received previous systemic therapy while 25 (83%) were treatment naïve. Confirmed objective response rate per RECIST v1.1 was 33% (80% confidence interval 22 to 47%), and there were 10 patients with partial responses (papillary, n=6; chromophobe, n=1; ccRCC, n=1; translocation, n=1; and unclassified, n=1) but there were no complete responses, although partial responses occurred in all IMDC risk groups. The median progression-free survival was 9.5 months (95% CI 5.5 to not reached). Notably, patients with nccRCC will be included in the previously mentioned CONTACT-03 trial.

In addition to this combination approaches, a phase II single arm study of pembrolizumab monotherapy in non-clear cell mRCC was recently published26. This phase II single-arm study enrolled 165 patients, of whom 72% had papillary disease, 13% had chromophobe, and 16% had unclassified RCC histology with 70% having intermediate or poor-risk disease, per IMDC criteria. Over a median follow-up of 32 months from enrollment, the objective response rate was 26.7%, with variation according to histology: 29% in those with papillary disease, 10% In those with chromophobe, and 31% for those with unclassified histology. Overall, the median progression-free survival was 4.2 months.

The SAVIOUR phase III randomized controlled trial assessed savolitinib as compared to sunitinib in patients with MET-driven papillary RCC27. After 60 randomized patients, external data on the PFS with sunitinib in patients with MET-driven disease became available and led to closure of the study. At the time of closure, progression-free survival, overall survival, and objective response rates were all numerically higher in patients receiving savolitinib, though the differences were not statistically significant (eg. for PFS, HR 0.71, 95% CI 0.37 to 1.36).

Additionally, at ASCO-GU 2021, the four-armed SWOG 1500 trial was presented and simultaneously published in the Lancet28. This study recruited patients with pathologically verified papillary RCC with measurable metastatic disease and Zubrod performance status 0-1. Patients were eligible for inclusion if they had received up to 1 prior systemic therapy excluding VEGF-directed agents. Patients were randomized in a 1:1:1:1 fashion to receive either sunitinib, cabozantinib, crizotinib, or savolitinib:

figure-2-SWOG-1500-Trial2x.jpg

There were 152 patients that were enrolled of whom 5 were ineligible. The included patients had a median age of 66 (range:29-89) and the majority (76%) were male. The vast majority (92%) had not received prior systemic therapy. Median PFS was significantly higher with cabozantinib relative to sunitinib (HR 0.60, 95% CI 0.37-0.97). Objective response rates were also higher with cabozantinib than with sunitinib, crizotinib, and savolitinib, with two complete responses and eight partial responses noted among the 44 patients randomized to cabozantinib. Median OS was 20 months for those receiving cabozantinib and 16.4 months for those receiving sunitinib.

Treatment Selection

As highlighted above, there are a number of treatment approaches which have, in phase III RCTs, demonstrated superiority to sunitinib in first-line treatment of clear cell mRCC including atezolizumab + bevacizumab, nivolumab + ipilimumab, pembrolizumab + axitinib, avelumab + axitinib, nivolumab + cabozantinib, pembrolizumab + lenvatinib. As highlighted in the BIONNIKK trial, a tumor-derived signature may allow for rationale treatment selection, however, prior to this, IMDC risk categories and PD-L1 testing may provide some guidance. Additionally, authors have considered cost-effectiveness analyses to help guide treatment selection29,30. However, as may be expected, varying the assumptions of these models may change the preferred treatment options. Numerous ongoing trials will continue to shape this rapidly evolving disease space and individual treatment choice will depend on the patient, physician, and system factors with guidelines likely to continue to recommend multiple options.


Written by: Zachary Klaassen, MD, MSc, Urologic Oncologist, Assistant Professor Surgery/Urology at the Medical College of Georgia at Augusta University, Georgia Cancer Center

Published Date: March 2021

Written by: Zachary Klaassen, MD, MSc
References:

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: a cancer journal for clinicians. 2020;70(1):7-30.
2. Welch HG, Skinner JS, Schroeck FR, Zhou W, Black WC. Regional Variation of Computed Tomographic Imaging in the United States and the Risk of Nephrectomy. JAMA internal medicine. 2018;178(2):221-227.
3. Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J. Survival and prognostic startitifcation of 670 patients with advanced renal cell carcinoma. Journal of Clinical Oncology. 1999;17:2530-2540.
4. Negrier S, Escudier B, Gomez F, et al. Prognostic factors of survival and rapid progression in 782 patients with metastatic renal carcinomas treated by cytokines: a report from the Groupe Francais d'Immunotherapie. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2002;13(9):1460-1468.
5. Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2002;20(1):289-296.
6. Coppin C, Porzsolt F, Awa A, Kumpf J, Coldman A, Wilt T. Immunotherapy for advanced renal cell cancer. Cochrane Database Syst Rev. 2005(1):CD001425.
7. Dutcher JP, Atkins M, Fisher R, et al. Interleukin-2-based therapy for metastatic renal cell cancer: the Cytokine Working Group experience, 1989-1997. Cancer J Sci Am. 1997;3 Suppl 1:S73-78.
8. Rosenberg SA, Yang JC, White DE, Steinberg SM. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann Surg. 1998;228(3):307-319.
9. Rini BI, Halabi S, Rosenberg JE, et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2008;26(33):5422-5428. 
10. Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370(9605):2103-2111.
11. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. The New England journal of medicine. 2007;356(2):115-124.
12. Motzer RJ, Hutson TE, Cella D, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. The New England journal of medicine. 2013;369(8):722-731.
13. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378(9807):1931-1939.
14. Hutson TE, Lesovoy V, Al-Shukri S, et al. Axitinib versus sorafenib as first-line therapy in patients with metastatic renal-cell carcinoma: a randomised open-label phase 3 trial. The lancet oncology. 2013;14(13):1287-1294.
15. Choueiri TK, Halabi S, Sanford BL, et al. Cabozantinib Versus Sunitinib As Initial Targeted Therapy for Patients With Metastatic Renal Cell Carcinoma of Poor or Intermediate Risk: The Alliance A031203 CABOSUN Trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2017;35(6):591-597.
16. Choueiri TK, Hessel C, Halabi S, et al. Cabozantinib versus sunitinib as initial therapy for metastatic renal cell carcinoma of intermediate or poor risk (Alliance A031203 CABOSUN randomised trial): Progression-free survival by independent review and overall survival update. European journal of cancer. 2018;94:115-125.
17. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. The New England journal of medicine. 2007;356(22):2271-2281.
18. Escudier B, Tannir NM, McDermott D, et al. LBA5 - CheckMate 214: Efficacy and safety of nivolumab 1 ipilimumab (N1I) v sunitinib (S) for treatment-naive advanced or metastatic renal cell carcinoma (mRCC), including IMDC risk and PD-L1 expression subgroups. Annals of Oncology. 2017;28(Supplement 5):621-622.
19. Escudier B, Motzer RJ, Tannir NM, et al. Efficacy of Nivolumab plus Ipilimumab According to Number of IMDC Risk Factors in CheckMate 214. European urology. 2019.
20. McDermott DF, Lee JL, Bjarnason GA, et al. Open-Label, Single-Arm Phase II Study of Pembrolizumab Monotherapy as First-Line Therapy in Patients With Advanced Clear Cell Renal Cell Carcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2021;39(9):1020-1028.
21. Motzer R, Powles T, Atkins M, et al. IMmotion151: A Randomized Phase III Study of Atezolizumab Plus Bevacizumab vs Sunitinib in Untreated Metastatic Renal Cell Carcinoma. Journal of Clinical Oncology. 2018;36(Suppl 6S).
22. Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. The New England journal of medicine. 2019;380(12):1116-1127.
23. Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. The New England journal of medicine. 2019;380(12):1103-1115.
24. Motzer R, Alekseev B, Rha SY, et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. The New England journal of medicine. 2021.
25. Martinez Chanza N, Xie W, Asim Bilen M, et al. Cabozantinib in advanced non-clear-cell renal cell carcinoma: a multicentre, retrospective, cohort study. The lancet oncology. 2019;20(4):581-590.
26. McDermott DF, Lee JL, Ziobro M, et al. Open-Label, Single-Arm, Phase II Study of Pembrolizumab Monotherapy as First-Line Therapy in Patients With Advanced Non-Clear Cell Renal Cell Carcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2021;39(9):1029-1039.
27. Choueiri TK, Heng DYC, Lee JL, et al. Efficacy of Savolitinib vs Sunitinib in Patients With MET-Driven Papillary Renal Cell Carcinoma: The SAVOIR Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020;6(8):1247-1255.
28. Pal SK, Tangen C, Thompson IM, Jr., et al. A comparison of sunitinib with cabozantinib, crizotinib, and savolitinib for treatment of advanced papillary renal cell carcinoma: a randomised, open-label, phase 2 trial. Lancet. 2021;397(10275):695-703.
29. Su Y, Fu J, Du J, Wu B. First-line treatments for advanced renal-cell carcinoma with immune checkpoint inhibitors: systematic review, network meta-analysis and cost-effectiveness analysis. Ther Adv Med Oncol. 2020;12:1758835920950199.
30. Bensimon AG, Zhong Y, Swami U, et al. Cost-effectiveness of pembrolizumab with axitinib as first-line treatment for advanced renal cell carcinoma. Curr Med Res Opin. 2020;36(9):1507-1517.

Association Between Novel Anti-Androgens and Overall Survival in Non-Metastatic Castration-Resistant Prostate Cancer

Background

While there have been dramatic changes in treatment options for patients with advanced prostate cancer over the past 5 years, perhaps the greatest change has been for patients with non-metastatic castration-resistant prostate cancer (nmCRPC). Prior to February 14, 2018, there were no agents approved by the United States Food and Drug Administration (FDA) for men with nmCRPC. Since then, three agents have been approved (apalutamide, enzalutamide, and darolutamide, in chronologic sequence of approval). While approval was initially based on improvements in metastasis-free survival, the seminal phase III trials for each of these agents have now reported overall survival data.
Written by: Zachary Klaassen, MD, MSc
References:
  1. Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer research. 1941;1(4):293-297.
  2. Scher HI, Morris MJ, Stadler WM, et al. Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol. 2016;34(12):1402-1418.

  3. Fizazi K, Shore N, Tammela TL, et al. Darolutamide in Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med. 2019.

  4. Hussain M, Fizazi K, Saad F, et al. PROSPER: A phase 3, randomized, double-blind, placebo (PBO)-controlled study of enzalutamide (ENZA) in men with nonmetastatic castration-resistant prostate cancer (M0 CRPC). Journal of Clinical Oncology. 2018;36(Suppl 6S):abstract 3.

  5. Smith MR, Saad F, Chowdhury S, et al. Apalutamide Treatment and Metastasis-free Survival in Prostate Cancer. N Engl J Med. 2018;378(15):1408-1418.

  6. Xie W, Regan MM, Buyse M, et al. Metastasis-Free Survival Is a Strong Surrogate of Overall Survival in Localized Prostate Cancer. J Clin Oncol. 2017;35(27):3097-3104.

  7. Hird AE, Magee DE, Bhindi B, et al. A Systematic Review and Network Meta-analysis of Novel Androgen Receptor Inhibitors in Non-metastatic Castration-resistant Prostate Cancer. Clin Genitourin Cancer. 2020.

  8. Small EJ, Saad F, Chowdhury S, et al. Apalutamide and overall survival in non-metastatic castration-resistant prostate cancer. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2019;30(11):1813-1820.

  9. Sternberg CN, Fizazi K, Saad F, et al. Enzalutamide and Survival in Nonmetastatic, Castration-Resistant Prostate Cancer. The New England journal of medicine. 2020;382(23):2197-2206.

  10. Smith MR, Saad F, Chowdhury S, et al. Apalutamide and Overall Survival in Prostate Cancer. European urology. 2020.

  11. Fizazi K, Shore N, Tammela TL, et al. Nonmetastatic, Castration-Resistant Prostate Cancer and Survival with Darolutamide. The New England journal of medicine. 2020;383(11):1040-1049.

Techniques and Procedures for Use - Intermittent Catheters

Intermittent catheterization is the method of bladder management in patients with urinary retention caused by a neurogenic bladder.  Neurogenic bladder can be caused by 1) upper motor neuron disease (for example, central nervous system lesions, including stroke, Parkinson’s disease, and multiple sclerosis [MS]); 2) spinal cord injury, including MS of the cord, and cervical and thoracic disc disease; and 3) lower motor neuron disease (for example, pelvic nerve injury, peripheral neuropathy, diabetes mellitus). These conditions can cause bladder dysfunction necessitating the use of intermittent catheterization.
Written by: Diane K. Newman, DNP, ANP-BC, FAAN
References:
  1. Beauchemin, L. , Newman, D.K., Le Danseur, M., Jackson,A., &Ritmiller, M. (2018). Best practices for clean intermittent catheterization.  48(9): 49-54
  2. Bhatt, N. R., Davis, N. F., Thorman, H., Brierly, R., & Scopes, J. (2021). Knowledge, skills, and confidence among healthcare staff in urinary catheterization. Canadian Urological Association Journal15(9). https://doi.org/10.5489/cuaj.6986
  3. Goetz, L.L., Droste, L., Klausner, A.P., & Newman, D.K. (2018). Intermittent catheterization. In: D.K. Newman, E.S. Rovner, A.J. Wein, (Eds). Clinical Application of Urologic Catheters and Products. (pp. 47-77) Switzerland: Springer International Publishing. Moore, KN., Fader, M. & Getliffe, K. Long‐term bladder management by intermittent catheterisation in adults and children. Cochrane Database of Systematic Reviews4 (2007).
  4. Hakansson MA. (2014). Reuse versus single-use catheters for intermittent catheterization: what is safe and preferred? Review of current status. Spinal Cord. 52:511–6.
  5. Sun AJ, Comiter CV, Elliott CS. (2018). The cost of a catheter: an environ- mental perspective on single use clean intermittent catheterization. Neurourol Urodyn. 37:2204–8.
  6. van Doorn, T.Bertil F M Blok, BFM. (2020). Multiuse Catheters for Clean Intermittent Catheterization in Urinary Retention: Is There Evidence of Inferiority? Eur Urol Focus. 15;6(5):809-810. doi: 10.1016/j.euf.2019.09.018. 
  7. Walter, M, & Krassioukov, A.V. (2020). Single-use Versus Multi-use Catheters: Pro Single-use Catheters. Eur Urol Focus. 6(5):807-808. doi: 10.1016/j.euf.2019.10.001. 

The Role of Remote Interactions in Genitourinary Oncology: Implications for Practice Change in Light of the COVID-19 Pandemic

The rapid spread of Coronavirus Disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) has dramatically reshaped the structure of Western society, including on health care delivery.1 While care for patients with cancer has been prioritized in nearly every guideline and recommendation, data suggest that among patients with COVID-19, those with a history of cancer have significantly increased risk of severe outcomes.2 Further, patients most at risk of a severe SARS-CoV-2 phenotype are men and those of advanced age or comorbidity,1,3-6 demographics which mirror the patient population with genitourinary cancers.
Written by: Zachary Klaassen, MD, MSc
References:
  1. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. The New England journal of medicine. 2020.
  2. Dai M, Liu D, Liu M, et al. Patients with cancer appear more vulnerable to SARS-COV-2: a multi-center study during the COVID-19 outbreak. Cancer Discov. 2020.
  3. Team CC-R. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343-346.
  4. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA : the journal of the American Medical Association. 2020.
  5. Myers LC, Parodi SM, Escobar GJ, Liu VX. Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California. JAMA : the journal of the American Medical Association. 2020.
  6. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA : the journal of the American Medical Association. 2020.
  7. Boehm K, Ziewers S, Brandt MP, et al. Telemedicine Online Visits in Urology During the COVID-19 Pandemic-Potential, Risk Factors, and Patients' Perspective. European urology. 2020;78(1):16-20.
  8. Castaneda P, Ellimoottil C. Current use of telehealth in urology: a review. World journal of urology. 2019.
  9. Medicaid CfM. MEDICARE TELEMEDICINE HEALTH CARE PROVIDER FACT SHEET. 2020; https://www.cms.gov/newsroom/fact-sheets/medicare-telemedicine-health-care-provider-fact-sheet. Accessed June 1, 2020.
  10. Schaffert R, Dahinden U, Hess T, et al. [Evaluation of a prostate cancer Ehealth tutorial : Development and testing of the website prostata-information.ch]. Urologe A. 2018;57(2):164-171.
  11. Berry DL, Hong F, Blonquist TM, et al. Decision Support with the Personal Patient Profile-Prostate: A Multicenter Randomized Trial. The Journal of urology. 2018;199(1):89-97.
  12. Parsons JK, Zahrieh D, Mohler JL, et al. Effect of a Behavioral Intervention to Increase Vegetable Consumption on Cancer Progression Among Men With Early-Stage Prostate Cancer: The MEAL Randomized Clinical Trial. JAMA : the journal of the American Medical Association. 2020;323(2):140-148.
  13. Skolarus TA, Metreger T, Wittmann D, et al. Self-Management in Long-Term Prostate Cancer Survivors: A Randomized, Controlled Trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2019;37(15):1326-1335.
  14. Viers BR, Lightner DJ, Rivera ME, et al. Efficiency, satisfaction, and costs for remote video visits following radical prostatectomy: a randomized controlled trial. European urology. 2015;68(4):729-735.
  15. Leahy M, Krishnasamy M, Herschtal A, et al. Satisfaction with nurse-led telephone follow up for low to intermediate risk prostate cancer patients treated with radical radiotherapy. A comparative study. Eur J Oncol Nurs. 2013;17(2):162-169.
  16. Belarmino A, Walsh R, Alshak M, Patel N, Wu R, Hu JC. Feasibility of a Mobile Health Application To Monitor Recovery and Patient-reported Outcomes after Robot-assisted Radical Prostatectomy. Eur Urol Oncol. 2019;2(4):425-428.
  17. Lange L, Fink J, Bleich C, Graefen M, Schulz H. Effectiveness, acceptance and satisfaction of guided chat groups in psychosocial aftercare for outpatients with prostate cancer after prostatectomy. Internet Interv. 2017;9:57-64.
  18. Trinh L, Arbour-Nicitopoulos KP, Sabiston CM, et al. RiseTx: testing the feasibility of a web application for reducing sedentary behavior among prostate cancer survivors receiving androgen deprivation therapy. Int J Behav Nutr Phys Act. 2018;15(1):49.
  19. Lee BJ, Park YH, Lee JY, Kim SJ, Jang Y, Lee JI. Smartphone Application Versus Pedometer to Promote Physical Activity in Prostate Cancer Patients. Telemed J E Health. 2019;25(12):1231-1236.
  20. Novara G, Checcucci E, Crestani A, et al. Telehealth in Urology: A Systematic Review of the Literature. How Much Can Telemedicine Be Useful During and After the COVID-19 Pandemic? European Urology (in press). 2020.
  21. Kontopantelis E, Roland M, Reeves D. Patient experience of access to primary care: identification of predictors in a national patient survey. BMC Fam Pract. 2010;11:61.
  22. Kane LT, Thakar O, Jamgochian G, et al. The role of telehealth as a platform for postoperative visits following rotator cuff repair: a prospective, randomized controlled trial. J Shoulder Elbow Surg. 2020;29(4):775-783.
  23. Wallis CJD, Morton G, Herschorn S, et al. The effect of selection and referral biases for the treatment of localised prostate cancer with surgery or radiation. British journal of cancer. 2018;118(10):1399-1405.
  24. Meti N, Rossos PG, Cheung MC, Singh S. Virtual Cancer Care During and Beyond the COVID-19 Pandemic: We Need to Get It Right. JCO Oncol Pract. 2020:OP2000281.
  25. Holstead RG, Robinson AG. Discussing Serious News Remotely: Navigating Difficult Conversations During a Pandemic. JCO Oncol Pract. 2020:OP2000269.
  26. Roberts ET, Mehrotra A. Assessment of Disparities in Digital Access Among Medicare Beneficiaries and Implications for Telemedicine. JAMA internal medicine. 2020.
  27. Lam K, Lu AD, Shi Y, Covinsky KE. Assessing Telemedicine Unreadiness Among Older Adults in the United States During the COVID-19 Pandemic. JAMA internal medicine. 2020.
  28. de la Torre-Diez I, Lopez-Coronado M, Vaca C, Aguado JS, de Castro C. Cost-utility and cost-effectiveness studies of telemedicine, electronic, and mobile health systems in the literature: a systematic review. Telemed J E Health. 2015;21(2):81-85.
  29. Jiang X, Ming WK, You JH. The Cost-Effectiveness of Digital Health Interventions on the Management of Cardiovascular Diseases: Systematic Review. J Med Internet Res. 2019;21(6):e13166.
  30. Shepperd S, Iliffe S. Hospital at home versus in-patient hospital care. Cochrane Database Syst Rev. 2001(3):CD000356.
  31. Qaddoura A, Yazdan-Ashoori P, Kabali C, et al. Efficacy of Hospital at Home in Patients with Heart Failure: A Systematic Review and Meta-Analysis. PloS one. 2015;10(6):e0129282.
  32. Caplan GA, Coconis J, Woods J. Effect of hospital in the home treatment on physical and cognitive function: a randomized controlled trial. The journals of gerontology Series A, Biological sciences and medical sciences. 2005;60(8):1035-1038.
  33. Raphael R, Yves D, Giselle C, Magali M, Odile CM. Cancer treatment at home or in the hospital: what are the costs for French public health insurance? Findings of a comprehensive-cancer centre. Health Policy. 2005;72(2):141-148.
  34. K. SR, Magee D, Hird AE, et al. Reoperation within 30 Days of Radical Cystectomy: Identifying High-Risk Patients and Complications Using ACS-NSQIP Database. Can Urol Assoc J (in press). 2020.
  35. Metcalf M, Glazyrine V, Glavin K, et al. The Feasibility of a Health Care Application in the Treatment of Patients Undergoing Radical Cystectomy. The Journal of urology. 2019;201(5):902-908.
  36. Catto JWF, Khetrapal P, Ambler G, et al. Multidomain Quantitative Recovery Following Radical Cystectomy for Patients Within the Robot-assisted Radical Cystectomy with Intracorporeal Urinary Diversion Versus Open Radical Cystectomy Randomised Controlled Trial: The First 30 Patients. European urology. 2018;74(4):531-534.
  37. van Hout L, Bokkerink WJV, Ibelings MS, Vriens P. Perioperative monitoring of inguinal hernia patients with a smartphone application. Hernia. 2020;24(1):179-185.
  38. Raja JM, Elsakr C, Roman S, et al. Apple Watch, Wearables, and Heart Rhythm: where do we stand? Ann Transl Med. 2019;7(17):417.
  39. Krishnan N, Li B, Jacobs BL, et al. The Fate of Radical Cystectomy Patients after Hospital Discharge: Understanding the Black Box of the Pre-readmission Interval. Eur Urol Focus. 2018;4(5):711-717.
  40. Krishnan N, Liu X, Lavieri MS, et al. A Model to Optimize Followup Care and Reduce Hospital Readmissions after Radical Cystectomy. The Journal of urology. 2016;195(5):1362-1367.
  41. Cai S, Grubbs A, Makineni R, Kinosian B, Phibbs CS, Intrator O. Evaluation of the Cincinnati Veterans Affairs Medical Center Hospital-in-Home Program. J Am Geriatr Soc. 2018;66(7):1392-1398.
  42. Richards SH, Coast J, Gunnell DJ, Peters TJ, Pounsford J, Darlow MA. Randomised controlled trial comparing effectiveness and acceptability of an early discharge, hospital at home scheme with acute hospital care. Bmj. 1998;316(7147):1796-1801.
  43. Ramkumar PN, Haeberle HS, Ramanathan D, et al. Remote Patient Monitoring Using Mobile Health for Total Knee Arthroplasty: Validation of a Wearable and Machine Learning-Based Surveillance Platform. J Arthroplasty. 2019;34(10):2253-2259.
  44. Breteler MJM, KleinJan E, Numan L, et al. Are current wireless monitoring systems capable of detecting adverse events in high-risk surgical patients? A descriptive study. Injury. 2019.
  45. Soukup T, Lamb BW, Arora S, Darzi A, Sevdalis N, Green JS. Successful strategies in implementing a multidisciplinary team working in the care of patients with cancer: an overview and synthesis of the available literature. J Multidiscip Healthc. 2018;11:49-61.
  46. Specchia ML, Frisicale EM, Carini E, et al. The impact of tumor board on cancer care: evidence from an umbrella review. BMC Health Serv Res. 2020;20(1):73.
  47. Charara RN, Kreidieh FY, Farhat RA, et al. Practice and Impact of Multidisciplinary Tumor Boards on Patient Management: A Prospective Study. J Glob Oncol. 2017;3(3):242-249.
  48. Salami AC, Barden GM, Castillo DL, et al. Establishment of a Regional Virtual Tumor Board Program to Improve the Process of Care for Patients With Hepatocellular Carcinoma. J Oncol Pract. 2015;11(1):e66-74.
  49. Lesslie M, Parikh JR. Implementing a Multidisciplinary Tumor Board in the Community Practice Setting. Diagnostics (Basel). 2017;7(4).
  50. McGeady JB, Blaschko SD, Brajtbord JS, Sewell JL, Chen AH, Breyer BN. Electronic Preconsultation as a Method of Quality Improvement for Urological Referrals. Urology Practice 2014;1:172-175.
  51. Chertack N, Lotan Y, Mayorga C, Mauck R. Implementation of a Urology E-Consult Service at a Safety Net County Hospital. Urology Practice.
  52. Witherspoon L, Liddy C, Afkham A, Keely E, Mahoney J. Improving access to urologists through an electronic consultation service. Can Urol Assoc J. 2017;11(8):270-274.
  53. Vimalananda VG, Gupte G, Seraj SM, et al. Electronic consultations (e-consults) to improve access to specialty care: a systematic review and narrative synthesis. J Telemed Telecare. 2015;21(6):323-330.
  54. Rosner BI, Gottlieb M, Anderson WN. Effectiveness of an Automated Digital Remote Guidance and Telemonitoring Platform on Costs, Readmissions, and Complications After Hip and Knee Arthroplasties. J Arthroplasty. 2018;33(4):988-996 e984.
  55. Balakrishnan AS, Nguyen HG, Shinohara K, Au Yeung R, Carroll PR, Odisho AY. A Mobile Health Intervention for Prostate Biopsy Patients Reduces Appointment Cancellations: Cohort Study. J Med Internet Res. 2019;21(6):e14094.
  56. Asch DA, Nicholson S, Berger ML. Toward Facilitated Self-Service in Health Care. The New England journal of medicine. 2019;380(20):1891-1893.

Indication of Catheterization for Intermittent Catheters (IC)

Intermittent catheterization (IC) is the “gold standard” for individuals with bladder dysfunction caused by neurologic or non-neurologic causes, a significant and growing population in the United States.  Intermittent catheterization is the recommended method for individuals who are unable to void or completely empty the bladder.  According to the 6th International Consultation on Incontinence, IC has replaced long-term indwelling urinary catheterization for patients with neurogenic lower urinary tract dysfunction (NLUTD) resulting in incomplete bladder emptying as it is associated with less urologic and non-urologic complications.
Written by: Diane K. Newman, DNP, ANP-BC, FAAN
References:
  1. Apostolidis, A., Drake, M., Emmanuel, A., Gajewski, J., Heesakkers, J., Kessler, T., …..Wyndaele, J.J. (2017) Neurologic urinary and fecal urinary incontinence. In: P. Abrams P CL, L.Cardozo, A. Wagg, A.Wein (Eds). International Consultation on Incontinence 6th edition. (pp. 1093-1308).  Plymouth, UK: Health Publications Ltd.
  2. Averch, T.D., Stoffel, J., Goldman, H.B., Griebling, T., Lerner, L., Newman, D.K., Peterson, A.C. (2014) AUA White Paper on Catheter-Associated Urinary Tract Infections: Definitions and Significance in the Urologic Patient Workgroup, Retrieved from  https://www.sciencedirect.com/science/article/pii/S2352077915000308
  3. Blok B, J. P-F, Pannek J, Castro-Diaz D, Del Popolo G, Groen J, Hamid R, Karsenty G, Kessler TM (2018) Guidelines on Neuro-Urology. EAU European Association of Urology, Retrieved from  https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Neuro-Urology-2018-large-text.pdf
  4. Bladder management following spinal cord injury. Spinal cord injury rehabilitation evidence. 2014.  https://msktc.org/lib/docs/Factsheets/SCI_Bladder_Health.pdf Accessed March 18, 2021
  5. Cottenden, A., Fader, M., Beeckman, D., Buckley, B., Kitson-Reynolds, E., Moore, K…..Wilde, M. (2017) Management using continence products. In: P. Abrams P CL, L.Cardozo, A. Wagg, A.Wein (Eds). International Consultation on Incontinence 6th edition. (pp. 2303-2426). Plymouth, UK: Health Publications Ltd
  6. Gajewski, J.B., Schurch B, Hamid R, Averbeck, A., Sakakibara, R., Agro, E.F.,…Haylen, B.T. (2018). An International Continence Society (ICS) report on the terminology for adult neurogenic lower urinary tract dysfunction (ANLUTD). Neurourology and Urodynamics, 37:1152–1161.  https://doi.org/10.1002/nau.23397
  7. Gamé X, Phé V, Castel-Lacanal E, Forin V, de Sèze M, Lam O, Chartier-Kastler E, Keppenne V, Corcos J, Denys P, Caremel R, Loche CM, Scheiber-Nogueira MC, Karsenty G, Even A. (2020). Intermittent catheterization: Clinical practice guidelines from Association Française d'Urologie (AFU), Groupe de Neuro-urologie de Langue Française (GENULF), Société Française de Médecine Physique et de Réadaptation (SOFMER) and Société Interdisciplinaire Francophone d'UroDynamique et de Pelvi-Périnéologie (SIFUD-PP). Prog Urol. Mar 24. pii: S1166-7087(20)30054-3. doi: 10.1016/j.purol.2020.02.009
  8. Ginsberg D. (2013). The epidemiology and pathophysiology of neurogenic bladder. Am J Manag Care. 2013;19(10 suppl):s191-6. http://www.ncbi.nlm. nih.gov/pubmed/24495240
  9. Groen J, Pannek J, Castro Diaz D, Del Popolo G, Gross T, Hamid R, Karsenty G, Kessler TM, Schneider M, Hoen L, Blok B. (2016) Summary of European Association of Urology(EAU) Guidelines on Neuro-Urology. Eur Urol. 69(2):324-33. doi: 10.1016/j.eururo.2015.07.071
  10. Goetz, L.L., Droste, L., Klausner, A.P., & Newman, D.K. (2018). Intermittent catheterization. In: D.K. Newman, E.S. Rovner, A.J. Wein, (Eds). Clinical Application of Urologic Catheters and Products. (pp. 47-77) Switzerland: Springer International Publishing.
  11. Gould, C., Umscheid, C., Agarwal, R., et al.; Healthcare Infection Control Practices Advisory Committee (HICPAC). (2009). In Guideline for prevention of catheter-associated urinary tract infections. Atlanta, GA: Centers for Disease Control and Prevention (CDC). Retrieved from http://www.cdc.gov/hicpac/pdf/cauti/cautiguideline2009final.pdf
  12. Gould CV, Umscheid CA, Agarwal RK, Kuntz G, Pegues DA (2010) Guideline for prevention of catheter-associated urinary tract infections 2009. Infection control and hospital epidemiology : the official journal of the Society of Hospital Epidemiologists of America. 31(4):319-326. doi:10.1086/651091
  13. Kennelly M, Thiruchelvam N, Averbeck MA, Konstatinidis C, Chartier-Kastler E, Trøjgaard P, Vaabengaard R, Krassioukov A, Jakobsen BP. AdultNeurogenic LowerUrinary Tract Dysfunction and Intermittent Catheterisation in a Community Setting: Risk Factors Model for Urinary Tract Adv Urol. 2019 Apr 2;2019:2757862. doi: 10.1155/2019/2757862.
  14. Kinnear, N., Barnett, D., O'Callaghan, M., Horsell, K., Gani, J, Hennessey, D. (2020). The impact of catheter-based bladder drainage method on urinary tract infection risk in spinal cord injury and neurogenic bladder: A systematic review. Neurourol Urodyn. 39(2):854-862. doi: 10.1002/nau.24253
  15. Klausner, A.P., & Steers, W.D. (2011). The neurogenic bladder: an update with management strategies for primary care physicians. Med Clin North Am. 95(1):111-20. https://DOI: 10.1016/j.mcna.2010.08.027.
  16. Lavis T, Goetz LL. (2019) Comprehensive care for persons with spinal cord injury. Phys Med Rehabil Clin N Am. 30(1):55-72. doi:10.1016/j.pmr.2018.08.010
  17. Management of the neurogenic bladder for adults with spinal cord injuries. https://www.aci.health.nsw. gov.au/__data/assets/pdf_file/0010/155179/ Management-Neurogenic-Bladder.pdf Accessed March 20, 2021
  18. Milligan J, Goetz LL, Kennelly MJ. (2020). A Primary Care Provider's Guide to Management of Neurogenic Lower UrinaryTractDysfunction and Urinary Tract Infection After Spinal Cord Injury. Top Spinal Cord Inj Rehabil. Spring;26(2):108-115. doi: 10.46292/sci2602-108
  19. Newman, D.K. (2017). Devices, products, catheters, and catheter-associated urinary tract infections. In: D.K. Newman, J.F. Wyman, V.W. Welch (Eds). Core Curriculum for Urologic Nursing (pp. 429-466). Pitman, New Jersey: Society of Urologic Nurses and Associates, Inc.
  20. Newman, D.K., & Wein, A.J. (2009). Managing and treating urinary incontinence (2nd ed). Baltimore: Health Professions Press.
  21. Panicker JN. (2020) NeurogenicBladder: Epidemiology, Diagnosis, and Management. Semin Neurol. Oct;40(5):569-579. doi: 10.1055/s-0040-1713876.
  22. Tate DG, Wheeler T, Lane GI, Forchheimer M, Anderson KD, Biering-Sorensen F, Cameron AP, Santacruz BG, Jakeman LB, Kennelly MJ, Kirshblum S, Krassioukov A, Krogh K, Mulcahey MJ, Noonan VK, Rodriguez GM, Spungen AM, Tulsky D, Post MW. Recommendations for evaluation of neurogenicbladderand bowel dysfunction after spinal cord injury and/or disease. J Spinal Cord Med. 2020 Mar;43(2):141-164. doi: 10.1080/10790268.2019.1706033

Ethnic Variation in Prostate Cancer Detection: A Feasibility Study for Use of the Stockholm3 Test in a Multiethnic U.S. Cohort - Beyond the Abstract

African American men are known to have nearly twice the incidence of prostate cancer and more than double the risk of prostate cancer mortality compared to Caucasian men.  There are several possible mechanisms for this including risk factors such as lifestyle, diet, genetic risk, inequalities in access to high-quality care, or other socioeconomic factors, however, the contribution of biology in prostate cancer risk is not well understood in this population.
Written by: Hari T. Vigneswaran, Andrea Discacciati, Peter H. Gann, Henrik Grönberg, Martin Eklund, Michael R. Abern
References:
  1. Darst, B.F., et al., A Germline Variant at 8q24 Contributes to Familial Clustering of Prostate Cancer in Men of African Ancestry. Eur Urol, 2020.
  2. Haiman, C.A., et al., Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet, 2011. 7(5): p. e1001387.
  3. Gronberg, H., et al., Prostate cancer screening in men aged 50-69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncol, 2015. 16(16): p. 1667-76.
  4. Vigneswaran, H.T., et al., Ethnic variation in prostate cancer detection: a feasibility study for use of the Stockholm3 test in a multiethnic U.S. cohort. Prostate Cancer Prostatic Dis, 2020.

Definition - Intermittent Catheters

What is an intermittent urinary catheter?

Intermittent catheterization (IC) is the insertion and removal of a catheter several times a day to empty the bladder. The purpose of catheterization is to drain urine from a bladder that is not emptying adequately or from a surgically created channel that connects the bladder with the abdominal surface (such as Mitrofanoff continent urinary diversion).

catheter

Intermittent catheterization is widely advocated as an effective bladder management strategy for patients with incomplete bladder emptying due to idiopathic or neurogenic detrusor (bladder) dysfunction (NDO).

Written by: Diane K. Newman, DNP, ANP-BC, FAAN
References:
  1. Averbeck MA, Krassioukov A, Thiruchelvam N, Madersbacher H, Bogelund M, Igawa Y. The impact of different scenarios for intermittent bladder catheterization on health state utilities: results from an internet-based time trade-off survey. J Med Econ. 2018:1-8.
  2. Avery M, Prieto J, Okamoto I, et al. Reuse of intermittent catheters: a qualitative study of IC users' perspectives. BMJ open. 2018;8(8):e021554
  3. Beauchemin L, Newman DK, Le Danseur M, Jackson A, Ritmiller M. Best practices for clean intermittent catheterization. Nursing. 2018;48(9):49-54.
  4. DeFoor W, Reddy P, Reed M, et al. Results of a prospective randomized control trial comparing hydrophilic to uncoated catheters in children with neurogenic bladder. J Pediatr Urol. 2017;13(4):373.e371–373.e375.
  5. Goetz LL, Droste L, Klausner AP, Newman DK. Catheters Used for Intermittent Catheterization. Clinical Application of Urologic Catheters, Devices and Products. Cham: Springer International Publishing; 2018:47-77.
  6. Heard, L. & Buhrer, R. How do we prevent UTI in people who perform intermittent catheterization? Rehabilitation Nursing, 2005: (30): p 44–45. 
    Krassioukov A, Cragg JJ, West C, Voss C, Krassioukov-Enns D. The good, the bad and the ugly of catheterization practices among elite athletes with spinal cord injury: a global perspective. Spinal Cord. 2015;53(1):78-82.
  7. Lapides, J., Diokno, A.C., Silber, S.J., & Lowe, B.S., Clean, intermittent self-catheterization in the treatment of urinary disease. 1972. Urology:107;  p458.
  8. Lapides, J., Diokno, A.C., Silber, S.M., & Lowe, B.S. Clean, intermittent self-catheterization in the treatment of urinary tract disease. 1972. Journal of Urology: 167; p1584–1586.
  9. Newman DK. (2017). Devices, products, catheters, and catheter-associated urinary tract infections. In: Newman DK, Wyman JF, Welch VW, editors. Core Curriculum for Urologic Nursing. 1st ed. Pitman (NJ): Society of Urologic Nurses and Associates, Inc; 439-66.
  10. Newman DK, Willson MM. Review of intermittent catheterization and current best practices. Urol Nurs. 2011 Jan-Feb;31(1):12-28, 48; quiz 29. PubMed PMID: 21542441
    11. Vahr S, Cobussen-Boekhorst H, Eikenboom J, et al. Evidence-based guideline for best practice in urological health care. Catheterization. Urethral intermittent in adults. Dilatation, urethral intermittent in adults. . EAUN guideline. 2013.

The Value of Multiparametric Magnetic Resonance Imaging Sequences to Assist in the Decision Making of Muscle-Invasive Bladder Cancer - Beyond the Abstract

Over the last few years, the landscape of bladder cancer (BC) management has profoundly changed, thanks to increased knowledge of disease biology and the identification of novel therapeutic approaches and biomarkers.1 No more than 5 years ago, the treatment-decision process for non muscle-invasive BC (NMIBC) or muscle-invasive BC (MIBC) was represented by radical surgery in most cases, with an opportunity for perioperative systemic therapy in a few cases. To date, the diagnostic and therapeutic armamentarium has been exceedingly enlarged for these patients.
Written by: Marco Bandini, and Andrea Necchi
References:
  1. Vetterlein MW, Witjes JA, Loriot Y, et al. Cutting-edge Management of Muscle-invasive Bladder Cancer in 2020 and a Glimpse into the Future. Eur Urol Oncol. Published online June 15, 2020. doi:10.1016/j.euo.2020.06.001
  2. Merck Sharp & Dohme Corp. A Phase II Clinical Trial to Study the Efficacy and Safety of Pembrolizumab (MK-3475) in Subjects With High Risk Non-Muscle Invasive Bladder Cancer (NMIBC) Unresponsive to Bacillus Calmette-Guerin (BCG) Therapy. clinicaltrials.gov; 2020. Accessed July 16, 2020. https://clinicaltrials.gov/ct2/show/NCT02625961
  3. Safety and efficacy of intravesical nadofaragene firadenovec for patients with high-grade, BCG unresponsive nonmuscle invasive bladder cancer (NMIBC): Results from a phase III trial. | Journal of Clinical Oncology. Accessed July 18, 2020. https://ascopubs.org/doi/abs/10.1200/jco.2020.38.6_suppl.442
  4. Powles T, Kockx M, Rodriguez-Vida A, et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat Med. Published online November 4, 2019. doi:10.1038/s41591-019-0628-7
  5. Necchi A, Raggi D, Gallina A, et al. Updated Results of PURE-01 with Preliminary Activity of Neoadjuvant Pembrolizumab in Patients with Muscle-invasive Bladder Carcinoma with Variant Histologies. Eur Urol. 2020;77(4):439-446. doi:10.1016/j.eururo.2019.10.026
  6. ASCO GU 2020: Results from BLASST-1 - Nivolumab, Gemcitabine, and Cisplatin in Muscle Invasive Bladder Cancer (MIBC) Undergoing Cystectomy. Accessed July 18, 2020. https://www.urotoday.com/conference-highlights/asco-gu-2020/asco-gu-2020-bladder-cancer/119384-asco-gu-2020-results-from-blasst-1-bladder-cancer-signal-seeking-trial-of-nivolumab-gemcitabine-and-cisplatin-in-muscle-invasive-bladder-cancer-mibc-undergoing-cystectomy.html
  7. Tan TZ, Rouanne M, Tan KT, Huang RY-J, Thiery J-P. Molecular Subtypes of Urothelial Bladder Cancer: Results from a Meta-cohort Analysis of 2411 Tumors. Eur Urol. 2019;75(3):423-432. doi:10.1016/j.eururo.2018.08.027
  8. Necchi A, Raggi D, Gallina A, et al. Impact of Molecular Subtyping and Immune Infiltration on Pathological Response and Outcome Following Neoadjuvant Pembrolizumab in Muscle-invasive Bladder Cancer. Eur Urol. Published online March 9, 2020. doi:10.1016/j.eururo.2020.02.028
  9. Necchi A, Raggi D, Giannatempo P, et al. Can Patients with Muscle-invasive Bladder Cancer and Fibroblast Growth Factor Receptor-3 Alterations Still Be Considered for Neoadjuvant Pembrolizumab? A Comprehensive Assessment from the Updated Results of the PURE-01 Study. Eur Urol Oncol. Published online May 14, 2020. doi:10.1016/j.euo.2020.04.005
  10. Bandini M, Ross JS, Raggi D, et al. Predicting the pathologic complete response after neoadjuvant pembrolizumab in muscle-invasive bladder cancer. J Natl Cancer Inst. Published online June 9, 2020. doi:10.1093/jnci/djaa076
  11. Necchi A, Gallina A, Dyrskjøt L, et al. Converging Roads to Early Bladder Cancer. Eur Urol. Published online March 17, 2020. doi:10.1016/j.eururo.2020.02.031
  12. Panebianco V, Narumi Y, Altun E, et al. Multiparametric Magnetic Resonance Imaging for Bladder Cancer: Development of VI-RADS (Vesical Imaging-Reporting And Data System). Eur Urol. 2018;74(3):294-306. doi:10.1016/j.eururo.2018.04.029
  13. Necchi A, Bandini M, Calareso G, et al. Multiparametric Magnetic Resonance Imaging as a Noninvasive Assessment of Tumor Response to Neoadjuvant Pembrolizumab in Muscle-invasive Bladder Cancer: Preliminary Findings from the PURE-01 Study. Eur Urol. 2020;77(5):636-643. doi:10.1016/j.eururo.2019.12.016
  14. Bandini M, Calareso G, Raggi D, et al. The Value of Multiparametric Magnetic Resonance Imaging Sequences to Assist in the Decision Making of Muscle-invasive Bladder Cancer. Eur Urol Oncol. Published online June 27, 2020. doi:10.1016/j.euo.2020.06.004

Complications - Intermittent Catheters

Urethral Adverse Events  |  Scrotal Complications  |  Bladder-related Complications  |  Pain  | Urinary Tract Infections  |  Causes of IC-related UTIs  |  Video Lecture  |  References

Intermittent catheterization (IC) is the preferred procedure for individuals with incomplete bladder emptying from non-neurogenic or neurogenic lower urinary tract dysfunction (NLUTD). IC is now considered the gold standard for bladder emptying in individuals following spinal cord injury (SCI) who have sufficient manual dexterity (Groen et al., 2016; Wyndaele et al, 2012). Goals of bladder management in individuals with a SCI include prevention of infection, injuries or trauma, optimizing social continence and function, and preventing upper tract deterioration. Despite these recommendations, complications and adverse events can arise in both men and women but are seen especially in male patients performing intermittent self-catheterization (ISC) for long-term.

Written by: Diane K. Newman, DNP, ANP-BC, FAAN
References:

 

  1. Bailey, L. & Jaffe, W.I. (2017). Obstructuve uropathy. In: D.K. Newman, J.F. Wyman, V.W. Welch, (Eds). Core Curriculum for Urologic Nursing. (pp.405-421) Pitman, New Jersey: Society of Urologic Nurses and Associates, Inc.
  2. Casey, R.G., Cullen I.M., Crotty, T., & Quinlan, D.M.  (2009) Intermittent self-catheterization and the risk of squamous cell cancer of the bladder: An emerging clinical entity? Canadian Urological Association Journal, 3(5), E51-E54.
  3. Clarke, S.A., Samuel, M., & Boddy, S.A.  (2005). Are prophylactic antibiotics necessary with clean intermittent catheterization? A randomized controlled trial. Journal of Pediatric Surgery, 40, 568-571.
  4. Cornejo-Davila V, Duran-Ortiz S, Pacheco-Gahbler C. (2017). Incidence of urethral stricture in patients with spinal cord injury treated with clean intermittent self-catheterization. Urology. 99:260–4.
  5. Cortese YJ, Wagner VE, Tierney M, Scully D, Devine DM, Fogarty A. (2020). Pathogen displacement during intermittent catheter insertion: a novel in vitro urethra model. J Appl Microbiol. Apr;128(4):1191-1200. doi: 10.1111/jam.14533.
  6. Cox L, He C, Bevins J, Clemens JQ, Stoffel JT, Cameron AP. (2017). Gentamicin bladder instillations decrease symptomatic urinary tract infections in neurogenic bladder patients on intermittent catheterization. Can Urol Assoc J. Sep;11(9):E350-E354. doi: 10.5489/cuaj.4434
  7. de Avila MAG, Rabello T, de Araújo MPB, Amaro JL, Zornoff DCM, Ferreira ASSBS, de Oliveira AS. (2021). Development and Validation of an Age-Appropriate Website for Children Requiring Clean IntermittentCatheterization. Rehabil Nurs. 2021 Mar-Apr 01;46(2):65-72. doi: 10.1097/rnj.0000000000000253
  8. De Ridder, D. J. M. K., Everaert, K., Fernandez, L. G., et al. (2005). Intermittent catheterisation with hydrophilic-coated catheters (SpeediCath) reduces the risk of clinical urinary tract infection in spinal cord injured patients: A prospective randomized parallel comparative trial. European Urology, 48(6), 991–995
  9. Groen J, Pannek J, Castro Diaz D, Del Popolo G, Gross T, Hamid R, et al. (2016). Summary of European Association of Urology (EAU) Guidelines on Neuro-Urology. Eur Urol. 69:324–33.
  10. Kinnear, N., Barnett, D., O'Callaghan, M., Horsell, K., Gani, J, Hennessey, D. (2020). The impact of catheter-based bladder drainage method on urinary tract infection risk in spinal cord injury and neurogenic bladder: A systematic review. Neurourol Urodyn. 39(2):854-862. doi: 10.1002/nau.24253
  11. Marei MM, Jackson R, Keene DJB. (2021). Intravesical gentamicin instillation for the treatment and prevention of urinarytract infections in complex paediatric urology patients: evidence for safety and efficacy. J Pediatr Urol. 17(1):65.e1-65.e11. doi: 10.1016/j.jpurol.2020.08.007
  12. Mitchell BG, Prael G, Curryer C, Russo PL, Fasugba O, Lowthian J, Cheng AC, Archibold J, Robertson M, Kiernan M. (2021). The frequency of urinarytract infections and the value of antiseptics in community-dwelling people who undertake intermittent urinarycatheterization: A systematic review. Am J Infect Control. Jan 21:S0196-6553(21)00022-5. doi: 10.1016/j.ajic.2021.01.009
  13. Moussa M, Chakra MA, Papatsoris AG, Dellis A, Dabboucy B, Fares Y. (2021). Bladder irrigation with povidone-iodine prevent recurrent urinarytract infections in neurogenic bladder patients on clean intermittent catheterization. Neurourol Urodyn. Feb;40(2):672-679. doi: 10.1002/nau.24607. Epub 2021 Jan 21
  14. Newman, D.K., New, P.W., Heriseanu, R. Petronis, S., Håkansson, J., Håkansson, M.A., & Lee, B.B. (2020). Intermittent catheterization with single- or multiple-reuse catheters: clinical study on safety and impact on quality of life. Int Urol Nephrol. Aug;52(8):1443-1451. doi: 10.1007/s11255-020-02435-9. 
  15. Patel DP, Herrick JS, Stoffel JT, et al. (2020) Reasons for cessation of clean intermittent catheterization after spinal cord injury: Results from the Neurogenic Bladder Research Group spinal cord injury registry. Neurourology and Urodynamics. 39:211–https://doi.org/10.1002/nau.24172
  16. Stensballe, J., Loom, D., et al. (2005). Hydrophilic-coated catheters for intermittent catheterisation reduce urethral microtrauma: A prospective, randomised, participant blinded, crossover study of three different types of catheters. Eu Urol, 48, 978-983.
  17. Stillman MD, Hoffman JM, Barber JK, Williams SR, Burns SP. (2018). Urinary tract infections and bladder management over the first year after discharge from inpatient rehabilitation. Spinal Cord Ser Cases. Oct 19;4:92. doi: 10.1038/s41394-018-0125-0.
  18. Stohrer M, Blok B, Castro-Diaz D, Chartier-Kastler E, Del Popolo G, Kramer G, Pannek J, Radziszewski P, Wyndaele JJ. (2009). EAU guidelines on neurogenic lower urinary tract dysfunction. Eur Urol. 56:81--8. doi: 10.1016/j.eururo.2009.04.028.
  19. Vapnek, J.M., Maynard, F.M., & Kim, J.  (2003). A prospective randomized trial of the LoFric hydrophilic coated catheter versus conventional plastic catheter for clean intermittent catheterization. Journal of Urology.169, 994-998.
  20. Walter, M., Ruiz, I. Squair, JW., Rios, LAS., Averbeck, MA.,  Krassioukov, AV. (2020). Prevalence of self-reported complications associated with intermittent catheterization in wheelchair athletes with spinal cord injury. Spinal Cord. Oct 13. doi: 10.1038/s41393-020-00565-6. 
  21. Wyndaele JJ, Brauner A, Geerlings SE, Bela K, Peter T, Bjerklund-Johanson TE. (2012). Clean intermittent catheterization and urinary tract infection: review and guide for future research. BJU Int. 110:E910–7.
  22. Wyndaele, J.J.  (2002). Complications of intermittent catheterization: Their prevention and treatment. Spinal Cord, 40(10), 536-541.

PARP Inhibitors in Prostate Cancer

Prostate cancer is a clinically heterogeneous disease with many patients having an indolent course requiring no interventions and others who either present with or progress to metastasis. While underlying dominant driving mutations are not widespread, there have been a number of key genomic mutations that have been consistently identified in prostate cancer patients, across the disease spectrum including gene fusion/chromosomal rearrangements (TMPRSS2-ERG), androgen receptor (AR) amplification, inactivation of tumor suppressor genes (PTEN/PI3-K/AKT/mTOR, TP53, Rb1) and oncogene activation (c-MYC, RAS-RAF).1
Written by: Zachary Klaassen, MD, MSc
References:
  1. Rubin MA, Maher CA, Chinnaiyan AM. Common gene rearrangements in prostate cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011;29(27):3659-3668.
  2. Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem. 2005;74:681-710.
  3. Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. The New England journal of medicine. 2016;375(5):443-453.
  4. Castro E, Romero-Laorden N, Del Pozo A, et al. PROREPAIR-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients With Metastatic Castration-Resistant Prostate Cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2019;37(6):490-503.
  5. Nicolosi P, Ledet E, Yang S, et al. Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. JAMA Oncol. 2019;5(4):523-528.
  6. Dantzer F, de La Rubia G, Menissier-De Murcia J, Hostomsky Z, de Murcia G, Schreiber V. Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1. Biochemistry. 2000;39(25):7559-7569.
  7. McCabe N, Turner NC, Lord CJ, et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006;66(16):8109-8115.
  8. Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 2006;25(43):5864-5874.
  9. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917-921.
  10. Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26(22):3785-3790.
  11. Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123-134.
  12. Mateo J, Carreira S, Sandhu S, et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. The New England journal of medicine. 2015;373(18):1697-1708.
  13. Mateo J, Porta N, McGovern U, et al. TOPARP-B: A phase II randomized trial of the poly(ADP)-ribose polymerase (PARP) inhibitor olaparib for metastatic castration resistant prostate cancers (mCRPC) with DNA damage repair (DDR) alterations. J Clin Oncol. 2019;37(15_suppl):5005.
  14. de Bono J, Mateo J, Fizazi K, et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. The New England journal of medicine. 2020.
  15. de Wit R, de Bono J, Sternberg CN, et al. Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer. The New England journal of medicine. 2019;381(26):2506-2518.
  16. Clarke N, Wiechno P, Alekseev B, et al. Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. The lancet oncology. 2018;19(7):975-986.
  17. Abida W, Bryce AH, Vogelzang N, et al. Preliminary Results From TRITON2: A Phase II Study of Rucaparib in Patients with mCRPC Associated with Homologous Recombination Repair Gene Alterations. Ann Oncol. 2018;29(suppl_8):viii271.
  18. Smith MR, Sandhu S, Kelly WK, et al. Phase II study of niraparib in patients with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD): Preliminary results of GALAHAD. J Clin Oncol. 2019;37(7_suppl):202.
  19. Hussain M, Daignault-Newton S, Twardowski PW, et al. Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate Cancer: Results From NCI 9012. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2018;36(10):991-999.
  20. Hussain M, Carducci MA, Slovin S, et al. Targeting DNA repair with combination veliparib (ABT-888) and temozolomide in patients with metastatic castration-resistant prostate cancer. Invest New Drugs. 2014;32(5):904-912.
  21. Yu EY, Massard C, Retz M, et al. Keynote-365 cohort a: Pembrolizumab (pembro) plus olaparib in docetaxel-pretreated patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol. 2019;37(7_suppl):145.

Best Practices for Management - Intermittent Catheters

Intermittent catheterization can have a significant physical and/or emotional impact on patients’ lives.Intermittent_Catheterization.png


Patients may be concerned about the discomfort associated with intermittent catheterization(IC), the need to maintain privacy, the fear of performing the catheterization, and the inability to find a clean and appropriate toilet or bathroom for catheterization when traveling outside their home. Clinicians need to consider these patient concerns in their teaching and recommend possible strategies.


Teaching Catheterization:


Successful intermittent self-catheterization (ISC) requires education and support, particularly during initial teaching and follow up. Although long term ISC is safe and well accepted, an early dropout rate of about 20% has been described in children and adolescents (Pohl et al., 2002), so good support, professional instruction on catheterization technique and periodic follow-up is necessary to obtain and maintain patient compliance.  A knowledgeable and experienced clinician, in most cases a nurse, is an important component for successful self-catheterization teaching. The nurse should assess what the patient and/or the person performing the catheterization knows about the urinary tract and functions of the bladder. Providing an overview of anatomy with pictures or the use of an anatomic model of the perineum can be very helpful. Many catheter manufacturers have visual guides or videos that can be used when teaching patients and/or caregivers.

Other teaching components include how to handle the catheter, identifying the urinary meatus, and care of the catheter. It is important that patients and/or the person performing the catheterization demonstrate understanding and/or ability or perform catheterization under the supportive supervision of the nurse.

Teaching Environment:

Most adults learn best under low to moderate stress, so it is important to teach self-catheterization in a low stress setting. The nurse should also assess the patient’s ability to learn intermittent self-catheterization (ISC), motivation to continue long-term catheterization, awareness of problems associated with catheterization, and the understanding of how to avoid possible complications.  Other factors to consider are the patient’s bladder capacity (still voiding some amounts or complete retention), adequate bladder outlet resistance (absence of urethral scarring, strictures or enlarged prostate), absence of urethral sensitivity to pain with catheterization, and patient’s possible fear of catheterization.  Initially, many patients may be extremely reluctant to perform any procedure that involves the genitals, but this is basically a “fear of the unknown.” Determining acceptance of intermittent catheterization is vital because non-compliance is seen in many patients, particularly adolescents.

General Assessment:

Many clinicians are concerned about teaching an older patient ISC but age is not necessarily a determinant to the success of ISC.  Disabilities, such as poor eyesight or blindness, poor hand dexterity, lack of perineal sensation, tremor, mental disability, and paraplegia, do not necessarily preclude the ability to perform ISC. But these obstacles may be difficult to overcome in some patients and caregivers. Teaching a patient with a spinal cord injury maybe even more of a challenge because motor and sensory impairment may require changes to catheterization techniques. Impaired cognitive function can affect success in being able to carry out the procedure independently.

Important Medical History:

Any previous experience with catheterization (e.g indwelling or IC) should be determined prior to teaching a patient ISC as this will direct the teaching and should be considered when choosing a catheter.  In a male patient, a history of urethral strictures or scarring or enlarged prostate may indicate need for a Coudé tip catheter.  If a woman has pelvic organ prolapse, angling the catheter around the prolapse may be needed.

Choosing the catheter:

With advances in catheter technology, the number of catheter types and designs has increased, adding complexity to the catheterization process for both the nurse and the patient.  Catheter types are now gender specific, long length for males, shorter length for females. acknowledging the anatomical differences in urethral length between men and women.

Design changes include the integration of all needed equipment (such as catheter, water-based

lubricant, and drainage bag) into a compact and user friendly system.  These are referred to as “closed systems or kits”. But some patients with limited dexterity may find it difficult to advance a catheter through a collection bag.

Intermittent_Catheterization2.png

When recommending a catheter, consider the patient’s lifestyle including plans for catheter storage, carrying, and disposal.  Offering a selection of three to four types of catheter is recommended.

Catheterization Position:


IC teaching includes identifying the best position for performing catheterization and it should be individualized for each patient. Variables to consider when assessing a patient for the ideal position includes abnormally high body mass index and body hiatus (large pannus) as both could restrict perineal and urethral access.  Most patients tend to catheterize in their bathroom, sitting on or standing in front of a toilet.  For someone who is in a wheelchair most of the day, catheterizing while sitting in the chair is an option but maybe more difficult for women.  Women may choose to use a mirror to visualize the urethra is also an option.

position.png

Catheterization Schedule:


The frequency of catheterization depends on patient history and the clinical reasons for initiating an IC program: for example, the individual with reflux and symptomatic UTI will require more frequent catheterizations than the person who is using IC to manage leakage caused by incomplete emptying and who has no UTI symptoms. A catheterization schedule can be recommended based on frequency-volume records, functional bladder capacity based on urodynamics findings, ultrasound bladder scans for PVR, and the impact of catheterization on a patient’s quality of life.  As a general rule, bladder volume should not exceed 500 mLs, and some advocate not exceeding 400 mLs. Based on an individual’s average output, catheterization is usually performed four to six times during the day. Many patients, especially older patients, may need to catheterize at bedtime and during the night. The bladder should be emptied completely with each catheterization.  When starting intermittent catheterization, the patient and/or caregiver should record the amount of urine drained from the bladder. If the patient voids, catheterization should always be performed after voiding.

Catheter Use and Care:
As there are no clear guidelines about the length of time for catheter use if the patient is re-using an uncoated catheter, re-using the same catheter for multiple catheterizations is notCatheterization_Position3.png recommended.  The cleaning of the catheter between uses has no basis in research because there are no published randomized controlled clinical trials of cleaning methods. The comparative effectiveness of cleaning methods, therefore, is unknown.


Currently, catheter manufacturers do not provide instructions for catheter re-use or cleaning. So best practices do not support the re-use of single-use catheters at this time.

There are no set guidelines for monitoring patients performing ISC, although many urologists advocate regular urine cytology and cystoscopy with random or targeted bladder biopsies.

In reality, many patients performing intermittent catheterization are lost to urologic follow up.

March 2021
© 2021 Digital Science Press, Inc. and UroToday.com
Written by: Diane K. Newman, DNP, ANP-BC, FAAN
References:
  1. Beauchemin L, Newman DK, Le Danseur M, Jackson A, Ritmiller M. (2018). Best practices for clean intermittent catheterization. 48, 9(Sept 2018):49-54.
  2. Canadian Practice Recommendations For Nurses, Clean Intermittent Urethral Catheterization in Adults, (April, 2020), Retrieved from:  https://ipac-canada.org/photos/custom/Members/pdf/Clean-Intermittent-Urethral-Catheterization-Adults-for-Nurses-BPR-May2020.pdf
  3. Gray, M., Wasner, M., Nichols, T.J. (2019). NursingPractice Related to IntermittentCatheterization: A Cross-Sectional Survey. Wound Ostomy Continence Nurs. 46(5):418-423. doi: 10.1097/WON.0000000000000576.
  4. Goetz, L.L., Droste, L., Klausner, A.P., & Newman, D.K. (2018). Intermittent catheterization. In: D.K. Newman, E.S. Rovner, A.J. Wein, (Eds). Clinical Application of Urologic Catheters and Products. (pp. 47-77) Switzerland: Springer International Publishing.
  5. Hentzen, C., Haddad, R., Ismael, S.S., Peyronnet, B., Gamé, X., Denys, P., … GRAPPPA (Clinical research Group of perineal dysfunctions in older adults). (2018) Intermittent self-catheterization in older adults: predictors of success for technique learning. Int Neurourol J. 22(1):65‐  https://doi.org/10.5213/inj.1835008.504
  6. Logan, K. (2020). An exploration of men's experiences of learning intermittent self-catheterisation with a silicone catheter. Br J Nurs. 29(2):84-90. https:// doi: 10.12968/bjon.2020.29.2.84
  7. Logan, K. (2017). The female experience of ISC with a silicone catheter. Br J Nurs. 26(2):82-88. https://doi: 10.12968/bjon.2017.26.2.82.
  8. Logan, K. (2015). The male experience of ISC with a silicone catheter. Br J Nursing 24(9), S32–4. https://doi: 10.12968/bjon.2015.24.Sup9.S30.
  9. Mangnall, J. (2015) Managing and teaching intermittent catheterisation. Br J Community Nurs. 20(2):82. https://doi.org/10.12968/bjcn.2015.20.2.82
  10. Martins, G., Soler, Z.A., Batigalia, F., & Moore, K.N. (209). Clean intermittent catheterization: Educational booklet directed to caregivers of children with neurogenic bladder dysfunction. Journal Wound Ostomy Conti. N, 36(5), 545-549. 
  11. Newman DK. (2017). Devices, products, catheters, and catheter-associated urinary tract infections. In: Newman DK, Wyman JF, Welch VW, editors. Core Curriculum for Urologic Nursing. 1st Pitman (NJ): Society of Urologic Nurses and Associates, Inc; 439-66.
  12. Newman DK, Willson MM. (2011) Review of intermittent catheterization and current best practices. Urol Nurs. Jan-Feb;31(1):12-28, 48; quiz 29. PubMed PMID: 21542441
  13. Pohl, H.G., Bauer, S.B., Borer, J.G., Diamond, D.A., Kelly, M.D., Grant, R., ... Retik, A.B.. (2002). The outcome of voiding dysfunction managed with clean intermittent catheterization in neurologically and anatomically normal children. British Journal of Urology International, 89(9), 923-927.
  14. Vahr, S., Cobussen-Boekhorst, H., Eikenboom, J., Geng, V., Holroyd, S., Lester, M., … Vandewinkel, C. (2013). Evidence-based guidelines for best practice in urological health care catheterisation dilatation, urethral intermittent in adults. European Association of Urology Nurses. Retrieved from  http://nurses.uroweb.org/wpcontent/uploads/2013_EAUN_Guide line_Milan_2013-Lr_DEF.pdf
  15. Vahr, S., Cobussen-Boekhorst, H., Eikenboom, J., Geng, V., Holroyd, S., Lester, M., … Vandewinkel, C. members of the European Association of Urology Nurses Guidelines Office. An edited summary of the European Association of Urology Nurses evidence-based guideline on Intermittent Urethral Catheterisation in Adults – Evidence-based Guidelines for Best Practice in Urological Health Care. Edition presented at the 18th International EAUN Meeting, London 2017. ISBN 978-90-79754-92-2. Retrieved from  http://www.eaun.uroweb.org
  16. Woodbury M.G., Hayes K.C., & Askes H.K. (2008). Intermittent catheterization practices following spinal cord injury: A national survey. Canadian Journal Urology, 15(3), 4065-4071.

PARP Inhibitors, Prostate Cancer and a Promise Fulfilled

June 26, 2020, marked the 20th anniversary of the publication of the first working draft from the Human Genome Project. At a special White House event to commemorate the results of this 10-year public effort (it was really more like 50 years since the discovery of DNA, but I digress), then-President Bill Clinton called the project “the most wondrous map ever created by humankind”, and touted its promise to detect, prevent, and treat disease.  Obtaining that first sequence from one human cost about $2B and resulted from a massive global public/private partnership.

Written by: Charles Ryan, MD
References: 1. McKie, Robin. ‘The wondrous map’: how unlocking human DNA changed the course of science. The Guardian. June 21, 2020. Retrieved from: https://www.theguardian.com/science/2020/jun/21/human-genome-project-unlocking-dna-covid-19-cystic-fibrosis-molecular-scientists