The Fight Against Increased Rates of Prostate Cancer

Over the nearly two years of navigating the COVID pandemic, urology practices were forced to increase their efficiency by focusing on streamlining patient visits without sacrificing care quality. However, postponed checkups were unavoidable as the public was encouraged to stay home. According to the Centers for Disease Control and Prevention (CDC), 40% of Americans in 2020 delayed or avoided medical care due to pandemic-related concerns. Although necessary, we are now facing the severe consequences of delayed diagnosis and prostate cancer seems to be leading the way.

Written by: David Crawford, MD

Techniques and Procedures for Use - Indwelling Catheters

I. Appropriate Urinary Catheter Use

A. Insert catheters only for appropriate indications (see Table 2 for guidance), and leave in place only as long as needed. (Category IB) (Key Questions 1B and 2C)

    1. Minimize urinary catheter use and duration of use in all patients, particularly those at higher risk for CAUTI or mortality from catheterization such as women, the elderly, and patients with impaired immunity. (Category IB) (Key Questions 1B and 1C)
    2. Avoid use of urinary catheters in patients and nursing home residents for management of incontinence. (Category IB) (Key Question 1A)
      1. Further research is needed on periodic (e.g., nighttime) use of external catheters (e.g., condom catheters) in incontinent patients or residents and the use of catheters to prevent skin breakdown. (No recommendation/unresolved issue) (Key Question 1A)
    1. Use urinary catheters in operative patients only as necessary, rather than routinely. (Category IB) (Key Question 1A)
    2. For operative patients who have an indication for an indwelling catheter, remove the catheter as soon as possible postoperatively, preferably within 24 hours, unless there are appropriate indications for continued use. (Category IB) (Key Questions 2A and 2C)
Table 2. A. Examples of Appropriate Indications for Indwelling Urethral Catheter Use 1-4
Patient has acute urinary retention or bladder outlet obstruction
Need for accurate measurements of urinary output in critically ill patients

Perioperative use for selected surgical procedures:

  • Patients undergoing urologic surgery or other surgery on contiguous structures of the genitourinary tract
  • Anticipated prolonged duration of surgery (catheters inserted for this reason should be removed in PACU)
  • Patients anticipated to receive large-volume infusions or diuretics during surgery
  • Need for intraoperative monitoring of urinary output
To assist in healing of open sacral or perineal wounds in incontinent patients
Patient requires prolonged immobilization (e.g., potentially unstable thoracic or lumbar spine, multiple traumatic injuries such as pelvic fractures)
To improve comfort for end of life care if needed
 
B. Examples of Inappropriate Uses of Indwelling Catheters
As a substitute for nursing care of the patient or resident with incontinenceAs a means of obtaining urine for culture or other diagnostic tests when the patient can voluntarily void
For prolonged postoperative duration without appropriate indications (e.g., structural repair of urethra or contiguous structures, prolonged effect of epidural anaesthesia, etc.).
Note: These indications are based primarily on expert consensus
 
B. Consider using alternatives to indwelling urethral catheterization in selected patients when appropriate.
    1. Consider using external catheters as an alternative to indwelling urethral catheters in cooperative male patients without urinary retention or bladder outlet obstruction. (Category II) (Key Question 2A)
    2. Consider alternatives to chronic indwelling catheters, such as intermittent catheterization, in spinal cord injury patients. (Category II) (Key Question 1A)
    3. Intermittent catheterization is preferable to indwelling urethral or suprapubic catheters in patients with bladder emptying dysfunction. (Category II) (Key Question 2A)
    4. Consider intermittent catheterization in children with myelomeningocele and neurogenic bladder to reduce the risk of urinary tract deterioration. (Category II) (Key Question 1A)
    5. Further research is needed on the benefit of using a urethral stent as an alternative to an indwelling catheter in selected patients with bladder outlet obstruction. (No recommendation/unresolved issue) (Key Question 1A)
    6. Further research is needed on the risks and benefits of suprapubic catheters as an alternative to indwelling urethral catheters in selected patients requiring short- or long-term catheterization, particularly with respect to complications related to catheter insertion or the catheter site. (No recommendation/unresolved issue) (Key Question 1A)

II. Proper Techniques for Urinary Catheter Insertion

  1. Perform hand hygiene immediately before and after insertion or any manipulation of the catheter device or site. (Category IB) (Key Question 2D)
  2. Ensure that only properly trained persons (e.g., hospital personnel, family members, or patients themselves) who know the correct technique of aseptic catheter insertion and maintenance are given this responsibility. (Category IB) (Key Question 1B)
  3. In the acute care hospital setting, insert urinary catheters using aseptic technique and sterile equipment. (Category IB
    1. Use sterile gloves, drape, sponges, an appropriate antiseptic or sterile solution for periurethral cleaning, and a single-use packet of lubricant jelly for insertion. (Category IB)
    2. Routine use of antiseptic lubricants is not necessary. (Category II) (Key Question 2C)
    3. Further research is needed on the use of antiseptic solutions vs. sterile water or saline for periurethral cleaning prior to catheter insertion. (No recommendation/unresolved issue) (Key Question 2C)
  4. In the non-acute care setting, clean (i.e., non-sterile) technique for intermittent catheterization is an acceptable and more practical alternative to sterile technique for patients requiring chronic intermittent catheterization.(Category IA) (Key Question 2A) 
    1. Further research is needed on optimal cleaning and storage methods for catheters used for clean intermittent catheterization. (No recommendation/unresolved issue) (Key Question 2C)
  5. Properly secure indwelling catheters after insertion to prevent movement and urethral traction. (Category IB)
  6. Unless otherwise clinically indicated, consider using the smallest bore catheter possible, consistent with good drainage, to minimize bladder neck and urethral trauma. (Category II)
  7. If intermittent catheterization is used, perform it at regular intervals to prevent bladder overdistension. (Category IB) (Key Question 2A)
  8. Consider using a portable ultrasound device to assess urine volume in patients undergoing intermittent catheterization to assess urine volume and reduce unnecessary catheter insertions. (Category II) (Key Question 2C) 
    1. If ultrasound bladder scanners are used, ensure that indications for use are clearly stated, nursing staff are trained in their use, and equipment is adequately cleaned and disinfected in between patients. (Category IB)

III. Proper Techniques for Urinary Catheter Maintenance

  1. Following aseptic insertion of the urinary catheter, maintain a closed drainage system. (Category IB) (Key Question 1B and 2B) 
    1. If breaks in aseptic technique, disconnection, or leakage occur, replace the catheter and collecting system using aseptic technique and sterile equipment. (Category IB)
    2. Consider using urinary catheter systems with preconnected, sealed catheter-tubing junctions. (Category II) (Key Question 2B)
  2. Maintain unobstructed urine flow. (Category IB) (Key Questions 1B and 2D)
    1. Keep the catheter and collecting tube free from kinking. (Category IB)
    2. Keep the collecting bag below the level of the bladder at all times. Do not rest the bag on the floor. (Category IB)
    3. Empty the collecting bag regularly using a separate, clean collecting container for each patient; avoid splashing, and prevent contact of the drainage spigot with the nonsterile collecting container. (Category IB)
  3. Use Standard Precautions, including the use of gloves and gown as appropriate, during any manipulation of the catheter or collecting system. (Category IB)
  4. Complex urinary drainage systems (utilizing mechanisms for reducing bacterial entry such as antiseptic-release cartridges in the drain port) are not necessary for routine use. (Category II) (Key Question 2B)
  5. Changing indwelling catheters or drainage bags at routine, fixed intervals is not recommended. Rather, it is suggested to change catheters and drainage bags based on clinical indications such as infection, obstruction, or when the closed system is compromised. (Category II) (Key Question 2C)
  6. Unless clinical indications exist (e.g., in patients with bacteriuria upon catheter removal post urologic surgery), do not use systemic antimicrobials routinely to prevent CAUTI in patients requiring either short or long-term catheterization. (Category IB) (Key Question 2C)
    1. Further research is needed on the use of urinary antiseptics (e.g., methenamine) to prevent UTI in patients requiring short-term catheterization. (No recommendation/unresolved issue) (Key Question 2C)
  7. Do not clean the periurethral area with antiseptics to prevent CAUTI while the catheter is in place. Routine hygiene (e.g., cleansing of the meatal surface during daily bathing or showering) is appropriate. (Category IB) (Key Question 2C)
  8. Unless obstruction is anticipated (e.g., as might occur with bleeding after prostatic or bladder surgery) bladder irrigation is not recommended. (Category II) (Key Question 2C)
    1. If obstruction is anticipated, closed continuous irrigation is suggested to prevent obstruction. (Category II)
  9. Routine irrigation of the bladder with antimicrobials is not recommended. (Category II) (Key Question 2C)
  10. Routine instillation of antiseptic or antimicrobial solutions into urinary drainage bags is not recommended. (Category II) (Key Question 2C)
  11. Clamping indwelling catheters prior to removal is not necessary. (Category II) (Key Question 2C)
  12. Further research is needed on the use of bacterial interference (i.e., bladder inoculation with a nonpathogenic bacterial strain) to prevent UTI in patients requiring chronic urinary catheterization. (No recommendation/unresolved issue) (Key Question 2C)

Catheter Materials

  1. If the CAUTI rate is not decreasing after implementing a comprehensive strategy to reduce rates of CAUTI, consider using antimicrobial/antiseptic-impregnated catheters. The comprehensive strategy should include, at a minimum, the high priority recommendations for urinary catheter use, aseptic insertion, and maintenance (see Section III. Implementation and Audit). (Category IB) (Key Question 2B)
    1. Further research is needed on the effect of antimicrobial/antiseptic-impregnated catheters in reducing the risk of symptomatic UTI, their inclusion among the primary interventions, and the patient populations most likely to benefit from these catheters. (No recommendation/unresolved issue) (Key Question 2B)
  2. Hydrophilic catheters might be preferable to standard catheters for patients requiring intermittent catheterization. (Category II) (Key Question 2B)
  3. Silicone might be preferable to other catheter materials to reduce the risk of encrustation in long-term catheterized patients who have frequent obstruction. (Category II) (Key Question 3)
  4. Further research is needed to clarify the benefit of catheter valves in reducing the risk of CAUTI and other urinary complications. (No recommendation/unresolved issue) (Key Question 2B)

Management of Obstruction

  1. If obstruction occurs and it is likely that the catheter material is contributing to obstruction, change the catheter. (Category IB)
  2. Further research is needed on the benefit of irrigating the catheter with acidifying solutions or use of oral urease inhibitors in long-term catheterized patients who have frequent catheter obstruction. (No recommendation/unresolved issue) (Key Question 3)
  3. Further research is needed on the use of a portable ultrasound device to evaluate for obstruction in patients with indwelling catheters and low urine output. (No recommendation/unresolved issue) (Key Question 2C)
  4. Further research is needed on the use of methenamine to prevent encrustation in patients requiring chronic indwelling catheters who are at high risk for obstruction. (No recommendation/unresolved issue) (Key Question 2C)

Specimen Collection

  1. Obtain urine samples aseptically. (Category IB)
    1. If a small volume of fresh urine is needed for examination (i.e., urinalysis or culture), aspirate the urine from the needleless sampling port with a sterile syringe/cannula adapter after cleansing the port with a disinfectant. (Category IB)
    2. Obtain large volumes of urine for special analyses (not culture) aseptically from the drainage bag. (Category IB

Reference:

[Guideline] Gould, C. V., C. A. Umscheid, et al. (2010). "Guideline for prevention of catheter-associated urinary tract infections 2009." Infect Control Hosp Epidemiol 31(4): 319-326.
[Guideline] Hooton, T. M., S. F. Bradley, et al. (2010). "Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines fInfectious Diseases Society of America." Clin Infect Dis 50(5) :625-663.

Written by: Diane K. Newman, DNP, ANP-BC, FAAN
References: I. Appropriate Urinary Catheter Use
A. Insert catheters only for appropriate indications (see Table 2 for guidance), and leave in place only as long as needed. (Category IB) (Key Questions 1B and 2C)


 

Indwelling Urinary Catheter-related Problems

There are other non-infectious IUC-related adverse effects that occur the longer an indwelling urinary catheter (IUC), particularly a transurethral IUC, is used for bladder drainage. They include catheter blockage, urine bypassing, bladder spasms, accidental catheter dislodgement, and non-deflating balloons.

Written by: Diane K. Newman, DNP, ANP-BC, FAAN
References:

Alex, J., Salamonson, Y., Ramjan, L.M., Montayre, J., Fitzsimons, J., & Ferguson, C. (2020) The impact of educational interventions for patients living with indwelling urinary catheters: A scoping review, Contemporary Nurse, 56:4, 309-330, DOI: 10.1080/10376178.2020.1835509 


American Nurses Association. Streamlined Evidence-Based RN Tool: Catheter Associated Urinary Tract Infection (CAUTI) Prevention. Retrieved from: https://www.nursingworld.org/~4aede8/globalassets/practiceandpolicy/innovation--evidence/clinical-practice-material/cauti-prevention-tool/anacautipreventiontool-final-19dec2014.pdf


Herter, R., & Kazer, M.W. (2010). Best practices in urinary catheter care. Home Healthc Nurse, 28(6),342-9; quiz 349-51. https://doi: 10.1097/NHH.0b013e3181df5d79.
Newman, D.K. (2017). Devices, products, catheters, and catheter-associated urinary tract infections. In: D.K. Newman, J.F. Wyman, V.W. Welch, (Eds). Core Curriculum for Urologic Nursing (pp.429-466) Pitman, New Jersey: Society of Urologic Nurses and Associates, Inc; 439-66.

Newman, D.K., Cumbee, R.P., & Rovner, E.S. (2018). Indwelling (transurethral and suprapubic) catheters. In: D.K. Newman, E.S. Rovner, A.J. Wein, (Eds). Clinical Application of Urologic Catheters and Products (pp.47-77) Switzerland: Springer International Publishing.

Shepherd, A.J., Mackay, W.G, & Hagen, S. (2017). Washout policies in long-term indwelling urinary catheterisation in adults. Cochrane Database of Systematic Reviews 2017, Issue 3. Art. No.: CD004012. https://DOI: 10.1002/14651858.CD004012.pub5.

Wilde, M.H., McMahon, J.M., Crean, H.F., & Brasch, J. (2017). Exploring relationships of catheter-associated urinary tract infection and blockage in people with long-term indwelling urinary catheters. J Clin Nurs. 26(17-18):2558-2571. https:// doi: 10.1111/jocn.13626. 

Wilde, M.H., McDonald, M.V., Brasch, J., McMahon, J.M., Fairbanks, E., Shah, S,. …Scheid, E. (2013). Long-term urinary catheter users self-care practices and problems. J Clin Nurs. 22:356-67. doi: 10.1111/jocn.12042

Complications - Indwelling Catheters

Overview  |  Bacteriuria  |  CAUTIs  |  Catheter-Associated Biofilms
Encrustations  |  Urosepsis  |  Urethral Damage  |  Common Urethral Complications  |  References

Catheter-Associated Complications

Catheter related problems due to an indwelling urinary catheter (IUC) have existed as long as urinary catheters have been utilized.  This section will review IUC complications: infectious complications such as (symptomatic bacterial infection, cystitis, pyelonephritis, urosepsis, and epididymitis), catheter blockage (due to calculi, biofilms, and encrustations), catheter related malignancy, hematuria, stones, urethral stricture and fistula from urethral injury, traumatic hypospadias, and periurethral urine leakage. 

Written by: Diane K. Newman, DNP, ANP-BC, FAAN

Real-World Clinical Utility of Decipher Biopsy Testing in Localized Prostate Cancer

In prostate pre- and post-biopsy decision making, more precision is urgently needed. Whereas expert imaging and biomarker-based risk scores already enable the clinician in this respect, the dilemma remains for those patients that are diagnosed with apparent indolent cancer. Additional diagnostic tools that (de)select patients for active surveillance (AS) would provide a great benefit for the patient.

Indwelling Urinary Catheters: Types

Indwelling urinary catheters (IUCs) are semi-rigid, flexible tubes. They drain the bladder but block the urethra. IUCshave double lumens, or separate channels, running down it lengthwise. One of the lumen is open at both ends and allows for urine drainage by connection to a drainage bag.

IUC-type1.png

The other lumen has a valve on the outside end and connects to a balloon at the tip; the balloon is inflated with sterile water when it lies inside the bladder, and allows for retention in the bladder.  These are known as two-way catheters.  

The name of the Foley catheter comes from the designer, Frederic Foley, a surgeon working in Boston, Massachusetts, in the 1930s. His original design was adopted by C. R. Bard, Inc. who manufactured the first prototypes and named them in honor of the surgeon.

Foley Catheter Sizes

Foley Catheter sizes chart
Catheter sizes are colored-coded at the balloon inflation site for easy identification

The relative size of a Foley catheter is described using French units (Fr).  In general, urinary catheters range in size from 8Fr to 36Fr in diameter. 1 Fr is equivalent to 0.33 mm = .013" = 1/77" in diameter.  

The crosssectional diameter of a urinary catheter is equal to three times the diameter.

Since urethral mucosa contains elastic tissue which will close around the catheter once inserted, the catheter chosen should be the smallest catheter that will adequately drain urine.  

Size Considerations

  • The routine use of large-size catheters diameters can cause more erosion of the bladder neck and urethral mucosa, can cause stricture formation, and do not allow adequate drainage of peri-urethral gland secretions, causing a buildup of secretions that may lead to irritation and infection. 
  • Larger Fr sizes (e.g., 20-24 Fr) are most commonly used for drainage of blood clots.  
  • The most commonly utilized indwelling transurethral and suprapubic catheters range from 14 to 16Fr in both adult females and males. 
  • A 14 or 16 Fr is also the standard catheter in most commercially available IUC insertion kits or trays.
  • In adolescents, catheter size 14 Fr is often used but for younger children, pediatric catheter sizes of 6-12 Fr are preferred.  

Shape and Design Variations

Foley Catheter
The distal end of most urinary catheters contains two ports (lumen or channel or dual lumen).  One is a funnel shaped drainage channel to allow efflux of urine once the catheter is placed and the other is the inflation/deflation channel for infusion of water into the retention balloon.  The infusion port for the balloon is usually labeled with the size of the balloon (5cc or 30 cc) and the size of the catheter.

3 Way Indwelling Catheter 
Three-way catheters are available with a third channel to facilitate continuous bladder irrigation or for instillation of medication.  This catheter is primarily used following urological surgery or in case of bleeding from a bladder or prostate tumor and the bladder may need continuous or intermittent irrigation to clear blood clots or debris. 


Drainage Eyes
The catheter should have a smooth surface with two drainage eyes at the tip that allow for urine drainage.

Drainage eyes are placed either laterally or opposed. Opposing drainage eyes generally facilitate better drainage.

Catheter products have changed significantly in their composition, texture, and durability since the 1990s.

The challenge is to produce a catheter that matches as closely as possible to the normal physiological and mechanical characteristics of the voiding system, specifically the urethra and bladder. Foley catheters come in several subtypes, which are described in the area designs

References

  1. Jahn P, Beutner K, Langer G. Types of indwelling urinary catheters for long-term bladder drainage in adults. Cochrane Database of Systematic Reviews 2012, Issue 10. Art. No.: CD004997. DOI: 10.1002/14651858.CD004997.pub3.Newman DK, Cumbee RP, Rovner ES. Indwelling (transurethral and suprapubic) catheters. In: Newman DK, Rovner ES, Wein AJ, editors. Clinical Application of Urologic Catheters and Products.  Switzerland: Springer International Publishing;2018,  47-77.
  2. Newman DK. Devices, products, catheters, and catheter-associated urinary tract infections. In: Newman DK, Wyman JF, Welch VW, editors. Core Curriculum for Urologic Nursing. 1st ed. Pitman (NJ): Society of Urologic Nurses and Associates, Inc; 2017, 439-66.
  3. Newman DK. The indwelling urinary catheter: Principles for best practice. JWOCN. 2007;34:655-61 DOI: 10.1097/01.WON.0000299816.82983.4a
  4. Newman DK, & Wein AJ. Managing and Treating Urinary Incontinence, Second Edition.  Baltimore: Health Professions Press;2009a;445-458.


Written by: Diane K. Newman, DNP, ANP-BC, FAAN

Be a Man… Get a PSA Test!

Some African American men are reluctant to have their prostate checked although they are at higher risk.  But it’s critical. Had I not been getting my PSA checked since I was 40, I wouldn’t have caught the disease early enough and my quality of life could have suffered …or worse.
Written by: William Whitlow, Prostate Cancer Survivor

Overactive Bladder (OAB) and Urinary Incontinence Clinical Care Pathway

Overactive bladder (OAB) is a symptom complex of lower urinary tract symptoms of urgency, frequency with or without urinary incontinence. It is prevalent in both men and women (10.8% and 12.8% respectively). According to Irwin and colleagues (2006), women have a higher rate (13.1% vs 5.4%) of urinary incontinence (urgency, stress, or mixed), are more likely (19% vs 12%) to report frequency of more than eight times per day, and are more bothered by urinary frequency than men (66% vs 46%).

Prevention Strategies - Indwelling Urinary Catheters

Overview  |  Executive Summary
Summary of Recommendations  |  Appropriate Urinary Catheter Use
Proper Techniques for Urinary Catheter Insertion  |  Proper Techniques for Urinary Catheter Maintenance
Quality Improvement Programs  |  Administrative Infrastructure  |  Surveillance  |  Download  |  References

CAUTI Prevention:

The 2009 Centers for Disease Control and Prevention (CDC) guidelines for the prevention of catheter-associated urinary tract infections (UTIs) recommends catheter use only for appropriate indications. Catheter use and duration should be minimized in all patients, especially those at higher risk for catheter-associated UTIs (e.g., women, elderly persons, and patients with impaired immunity).

Catheters should be kept in place only for as long as needed. Indwelling catheters placed in patients undergoing surgery should be removed as soon as possible postoperatively. The use of urinary catheters for treatment of incontinence in patients and nursing home residents should be avoided.
Written by: Diane K. Newman, DNP, ANP-BC, FAAN

Beyond a VISION to Making a SPLASH: Advances in PSMA-Based Theranostics in Prostate Cancer

Background



In spite of the rapid progress and many exciting advances in the treatment of metastatic castration-resistant prostate cancer over the past few years, the disease remains incurable with a median overall survival of 12-35 months.1-4
Written by: Zachary Klaassen, MD, MSc, Medical College of Georgia, Augusta, Georgia
References:
  1. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England journal of medicine. 2010;363(5):411-422.
  2. Ryan CJ, Smith MR, Fizazi K, et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. The lancet oncology. 2015;16(2):152-160.
  3. de Bono JS, Oudard S, Ozguroglu M, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147-1154.
  4. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. The New England journal of medicine. 2013;369(3):213-223.
  5. Sartor O. Isotope Therapy for Castrate-Resistant Prostate Cancer: Unique Sequencing and Combinations. Cancer J. 2016;22(5):342-346.
  6. Ye X, Sun D, Lou C. Comparison of the efficacy of strontium-89 chloride in treating bone metastasis of lung, breast, and prostate cancers. J Cancer Res Ther. 2018;14(Supplement):S36-S40.
  7. James N, Pirrie S, Pope A, et al. TRAPEZE: a randomised controlled trial of the clinical effectiveness and cost-effectiveness of chemotherapy with zoledronic acid, strontium-89, or both, in men with bony metastatic castration-refractory prostate cancer. Health technology assessment. 2016;20(53):1-288.
  8. Henriksen G, Breistol K, Bruland OS, Fodstad O, Larsen RH. Significant antitumor effect from bone-seeking, alpha-particle-emitting (223)Ra demonstrated in an experimental skeletal metastases model. Cancer research. 2002;62(11):3120-3125.
  9. Bruland OS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? Clinical cancer research : an official journal of the American Association for Cancer Research. 2006;12(20 Pt 2):6250s-6257s.
  10. Sadaghiani MS, Sheikhbahaei S, Werner RA, et al. A Systematic Review and Meta-analysis of the Effectiveness and Toxicities of Lutetium-177-labeled Prostate-specific Membrane Antigen-targeted Radioligand Therapy in Metastatic Castration-Resistant Prostate Cancer. European urology. 2021;80(1):82-94.
  11. Hofman MS, Emmett L, Sandhu S, et al. [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021;397(10276):797-804.
  12. Sartor O, de Bono J, Chi KN, et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. The New England journal of medicine. 2021.

Indications - Indwelling Catheters

Use of Indwelling Urinary Catheters  |  Acute Care Catheter Use  |  Indications for indwelling urinary catheter use
Selected peri-operative needs  |  LTC Catheter Use  |  References

Each year, urinary catheters are inserted in more than 5 million patients in acute care hospitals and long-term care (LTC) facilities. Historically, indwelling urinary catheters (IUC) have been used in the chronically, medically compromised older adults. 

The settings in which the prevalence of long-term IUCs usage is the greatest are: 1) skilled nursing facilities, where they are used in residents with UI, and 2) homes where the person requires skilled nursing visits.

In the home-care setting, the prevalence of IUCs is growing with the increasing number of older adults. The median time of indwelling catheter use in home care is reported as 3 to 4 years.  However, the number of “home-bound” patients who use a catheter indefinitely to manage UI or because of urinary retention has not been well documented in medical or nursing research. 

Indications for Indwelling Catheter (medical necessity)

Indwelling catheter overuse occurs when a device is in place without an appropriate indication. There are two ways of reducing IUC use: 1) by minimizing the initial placement of IUCs and 2) by reducing the duration of each catheterization.  Urinary catheters have various medical indications but the most common is short term drainage of the urinary bladder.    For some patients with upper tract deterioration due to elevated bladder storage pressures (e.g. poor compliance from prior radiation therapy, neurogenic disease, etc.), an IUC may have a role.  The catheter permits low pressure, unimpeded drainage of urine from the upper urinary tract through the bladder and then directly into a collection receptacle.  The following are indications for IUC use.

- Short term for acute urinary retention: 

  •  Sudden and complete inability to void
  •  Need for immediate and rapid bladder decompression
  •  Monitoring of intake and output

- Temporary relief of bladder outlet obstruction secondary to:

  • Enlarged prostate gland in men
  • Urethral stricture
  • Obstructing pelvic organ prolapse in women

- Chronic urethral obstruction or urinary retention and surgical interventions, or the use of intermittent catheterization, has failed or is not feasible, or both
- Short term following a urological or gynecological surgical procedure
- Irreversible medical conditions are present (e.g., metastatic terminal disease, coma, end stages, of other conditions)
- Presence of stage III or IV pressure ulcers that are not healing because of continual urine leakage
- Instances in which a caregiver is not present to provide incontinence care 

 Use of Indwelling Urinary Catheters 

Although indwelling urinary catheters are commonly used in most clinical settings, data suggest that more than 20% of these catheters are placed without a specific medical indication and that they often remain in place without the knowledge of the patient’s physician. Studies of the appropriateness of use of urinary catheters indicate that 21 to 38% of initial urinary catheterizations are unjustified, and one-third to one-half of days of continued catheterization are unjustified. The current challenges are to develop effective methods to sensitize the minds of clinicians to avoid the routine use of indwelling catheters, remove catheters when they are no longer needed, develop alternative methods for care of urinary incontinence (UI), employ noninvasive methods to measure bladder function and urine output, and improve urine drainage systems.

Catheter Use in Acute Care Setting (Hospitals, Acute Rehabilitation)

Catheter_use.png

In acute care hospital settings, approximately 12-16% of adult patients and up to 25% of all hospitalized patients usually for surgery, urine output measurement, urinary retention, or UI. Their use is greater in high acuity patient units, with critical care and intensive care units having the highest.  At least 8%-23% of patients admitted through the emergency room have an IUC.  Nearly 50% of surgical patients remain catheterized beyond 48 hours postoperatively; approximately 50% of medical patients do not have a clear indication for an IUC.   

Hospitals use IUCs more than any other medical device. Because the most important risk factor for catheter-associated bacteriuria is duration of catheterization, most catheters in hospitalized patients are placed for only 2 to 4 days.

Extended indwelling catheter use in older adult patients sustaining hip fracture who are discharged to skilled nursing facilities with a catheter in place have been associated with poorer outcomes because these individuals are at higher risk of rehospitalization for CAUTIs and sepsis. Increased mortality at 30 days is seen in these individuals when compared to patients whose catheter was removed prior to discharge. In hospitalized older medical patients with UI, without a specific indication, an IUC has been associated with a greater risk of death - four times as great during hospitalization and two times as great within 90 days after discharge.

The risk of infection is associated with the method and duration of catheterization, the quality of catheter care, and host susceptibility. Around 50% of hospitalized patients catheterized longer than 7 to 10 days contract bacteriuria.

Although frequently asymptomatic, 20 to 30% of individuals with catheter-associated bacteriuria will develop symptoms of CAUTI. Many of these infections are serious and lead to significant morbidity and mortality. 

Catheter Use in a Nursing Home

The prevalence of indwelling urinary catheter use in nursing homes has been established as 5-7%.
It may be greater in facilities that have poor success with toileting programs because the catheter is used as a means to maintain resident dryness.  
At least 40% of all infections seen in nursing homes are in the urinary tract. Of these infections, 80% are due to urinary tract catheterization and instrumentation.  
CAUTI is of major importance because of its effect on outcomes and treatment costs. The major reason for use of an indwelling catheter in LTC is incontinence or for healing a pressure injury.  

Catheter Use in Home Care

In the community, the prevalence of IUC is difficult to determine as many of the long-term IUC patients are lost to urologic follow-up and are managed by home care nurses or allied clinicians.  A National Home and Hospice Care Survey in 2007 reported catheter prevalence in home care (excluding hospice) at 9% (n = 4683) or 135,000 people with catheters of the 1.5 million home care patients in 2007. (http://www.cdc.gov/nchs/fastats/homehealthcare.htm).

 Alternatives to indwelling urinary catheter use

1. Before placing an indwelling catheter, please consider if these alternatives would be more appropriate:

  • Bedside commode, urinal, or continence garments: to manage incontinence.
  • Bladder management through the use of a bladder scanner: to assess and confirm urinary retention, prior to placing catheter to release urine.
  • Straight catheterization: for one-time, intermittent, or chronic voiding needs.
  • External “condom” catheter: appropriate for cooperative men without urinary retention or obstruction.

2. Before placing an indwelling catheter, does the patient have one of the following appropriate indications* for placing indwelling urinary catheters?

  • Acute urinary retention: e.g., due to medication (anesthesia, opioids, paralytics), or nerve injury
  • Acute bladder outlet obstruction: e.g., due to severe prostate enlargement, blood clots, or urethral compression
  • Need for accurate measurements of urinary output in the critically ill
  • To assist in healing of open sacral or perineal wounds in incontinent patients
  • To improve comfort for end of life, if needed
  • Patient requires strict prolonged immobilization (e.g., potentially unstable thoracic or lumbar spine, multiple traumatic injuries such as pelvic fracture)

Selected peri-operative needs:

  • Urologic surgery or other surgery on contiguous (adjacent) structures of the genitourinary tract
  • Anticipated prolonged duration of surgery (Note: catheters placed for this reason should be removed in PACU)
  • Large volume infusions or diuretics anticipated during surgery
  • Need for intraoperative monitoring of urinary output

indications iuc330d
Click Here to View or Download Indications for an Indwelling (Foley) Catheter

                  

References
1. Centers for Medicare & Medicaid Services. Nursing Home Data Compendium. 2013. http://www.cms.gov/Medicare/Provider-Enrollment-andCertification/CertificationandComplianc /downloads/nursinghomedatacompendium_508.pdf.
2. Fakih MG, Heavens M, Ratcliffe CJ, Hendrich A. First step to reducing infection risk as a system: evaluation of infection prevention processes for 71 hospitals. Am J Infect Control. 2013;41:950-54. doi:10.1016/j.ajic.2013.04.019
3. Gould CV, Umscheid CA, Agarwal RK, Kuntz G, Pegues DA, HICPAC. Guideline for prevention of catheter associated urinary tract infections 2009. Infect Control Hosp Epidemiol. 2010;31:319-26. doi: 10.1086/651091.
4. Gould CV, Umscheid CA, Agarwal RK, Kuntz G, Pegues DA. Guideline for prevention of catheter‐associated urinary tract infections 2009. Infect Control Hosp Epidemiol;31:319‐26.
5. Holroyd-Leduc JM, Sen S, Bertenthal D, Sands LP, Palmer RM, Kresevic DM, ………. Landefeld CS. The relationship of indwelling urinary catheters to death, length of hospital stay, functional decline, and nursing home admission in hospitalized older medical patients. Journal of the American Geriatrics Society, 2007;55;227–233.
6. Saint S. Clinical and economic consequences of nosocomial catheter-related bacteriuria. Am J Infect Control. 2000;28(1):68-75.
7. Saint S, Wiese J, Amory JK, et al. Are physicians aware of which of their patients have indwelling urinary catheters? Am J Med. 2000;109(6):476-480.
8. Saint S, Kowalski CP, Kaufman SR, et al. Preventing hospital‐acquired urinary tract infection in the United States: a national study. Clin Infect Dis 2008;46:243‐50.  
9. Saint S, Kaufman SR, Rogers MA, Baker PD, Ossenkop K, Lipsky BA. Condom versus indwelling urinary catheters: a randomized trial. J Am Geriatr Soc. 2006;54:1055‐61.  
10. Schuur JD, Chambers JG, Hou PC. Urinary catheter use and appropriateness in U.S. emergency departments, 1995-2010. Acad Emerg Med. 2014 Mar;21(3):292-300. doi: 10.1111/acem.12334Urinary catheter use and appropriateness in U.S. emergency departments, 1995-2010. Acad Emerg Med. 2014 Mar;21(3):292-300. doi: 10.1111/acem.12334

Written by: Diane K. Newman, DNP, ANP-BC, FAAN

Mental Health in Bladder Cancer Patients: Clinical Implications and Outcomes

Introduction



In 2021 in the United States, there will be approximately 83,730 new cases of bladder cancer (~64,280 men and 19,450 women) and approximately 17,200 deaths from bladder cancer (12,260 men and 4,940 women). On a global scale, in 2017 it was estimated that there were 2.63 million (95% CI 2.57-2.72 million) bladder cancer cases, involving 2.03 million (95% CI 1.96-2.11 million) men and 0.60 million (95% CI 0.58-0.62 million) women.1 As such, although bladder cancer may be a lethal diagnosis for some, there are also millions of bladder cancer survivors worldwide. Bladder cancer patients, generally, have a higher level of comorbidity than most other patients with genitourinary malignancies, and recent literature over the last 5 years or so suggests that bladder cancer patients have proportionately worse depression and mental health, as well as being at increased risk of suicidal death when compared to the general population. This article will discuss the impact of depression and mental health associated with a bladder cancer diagnosis, assess the impact of a bladder cancer diagnosis on risk of suicide, and discuss future endeavors and areas of focus for improving outcomes for patients with bladder cancer.

Depression and Anxiety



In Western countries, the lifetime prevalence of major depression is estimated at 16.5%. Work from >30 years ago from the Psychological Collaborative Oncology Group suggested that 47% of adult patients with cancer were maladjusted to an illness crisis, with the most common manifestation being adjustment disorder with depression. In 2018, Vartolomei and colleagues2 performed a systematic review of the literature assessing the prevalence of depression and anxiety among patients with bladder cancer, including 13 studies encompassing 1,659 patients. Six studies assessed depression prior and after treatment at 1, 6, and 12 months, whereas four studies investigated anxiety, and seven additional studies reported the prevalence of depression and anxiety among patients with bladder cancer at a specific time-point. Overall, pretreatment depression rates ranged from 5.7 to 23.1% and post-treatment from 4.7 to 78%, while post-treatment anxiety rates ranged from 12.5 to 71.3%.

Compared to the prostate cancer literature, there is a relative paucity of data assessing how specific aspects of treatment may affect depression scores amongst bladder cancer patients. In a single-center setting, Zhang et al.3 evaluated anxiety, depression, and quality of life by patients' self-reported scales, as well as predictive factors for anxiety and depression exacerbation among 194 muscle-invasive bladder cancer patients receiving adjuvant chemotherapy after radical cystectomy. The Hospital Anxiety and Depression Scale (HADS) was used to evaluate anxiety and depression, and the EORTC QLQ-C30 Scale was used to assess quality of life. After adjuvant chemotherapy, this study found that HADS-Anxiety score (p = 0.042), anxiety percentage (p = 0.036), HADS-Depression score (p < 0.001), depression percentage (p = 0.002) and the EORTC QLQ-C30 Functional score (p = 0.002) were increased compared with baseline. Furthermore, on multivariable analysis, increasing age (p < 0.001), increasing BMI (P = 0.021) and hypertension (P = 0.001) were associated with worsening of the HADS-Anxiety score, while male gender (P < 0.001) was associated with worsening of HADS-Depression score during adjuvant chemotherapy.

Taken together, given the prevalence of bladder cancer and the associated post-diagnosis/treatment depression and anxiety that occurs, this is an actionable patient population for targeting psycho-oncology intervention, particularly in the comorbid, elderly, and male patients that are particularly at risk of depression or anxiety.
 

Broader Mental Health Considerations



Although the majority of bladder cancer literature has been dedicated to optimizing oncological outcomes and focuses on physical prognostic criteria, emerging data have suggested that both pre-and post-treatment mental health (not just isolated to depression) may play as important a role in patient outcomes as physical health. In a systematic review assessing the prevalence and impact of mental health disorders in bladder cancer patients, Pham et al.4 identified 87 publications that met initial inclusion criteria, leading to 19 relevant publications incorporated into the review, of which 11 were prospective studies and 8 were retrospective studies. They found that mental health issues, such as depression and anxiety, often coexist with a diagnosis of bladder cancer. Further, those with a worse oncologic prognosis have a greater psychological burden. Additionally, poor mental health was associated with adverse treatment outcomes such as postsurgical complication rates and survival outcomes.

A similar study to characterize the patterns of care and survival of elderly patients with a pre-existing mental illness diagnosed with bladder cancer was undertaken by Sathianathen et al.5 using the SEER-Medicare database. This study included elderly patients (≥68 years old) with localized bladder cancer from 2004 to 2011, stratified by the presence of a pre-existing mental illness at the time of cancer diagnosis: severe mental illness (consisting of bipolar disorder, schizophrenia, and other psychotic disorders), anxiety, and/or depression. The authors examined
the stage at presentation and receipt of guideline-concordant therapies (ie. radical cystectomy for muscle-invasive disease). Among 66,476 patients meeting inclusion criteria, 6.7% (n = 4,468) had a pre-existing mental health disorder at the time of cancer diagnosis. These patients were significantly more likely to present with muscle-invasive disease than those with no psychiatric history (23.0% vs 19.4%, p < 0.01). In patients with muscle-invasive disease, those with severe mental illness (OR 0.55, 95% CI 0.37-0.81) and depression only (OR 0.71, 95% CI 0.58-0.88) were significantly less likely to undergo radical cystectomy or trimodality therapy. However, patients in this subgroup who underwent radical cystectomy had significantly superior overall (HR 0.54, 95% CI 0.43-0.67) and disease-specific survival (HR 0.76, 95% CI 0.58-0.99) compared with those who did not receive curative treatment.

Pre-cancer diagnosis utilization of psychiatric resources has been suggested as a more accurate assessment of mental health comorbidity burden at the population level rather than relying on specific ICD-9/ICD-10 codes for mental health illnesses. To assess this impact in a Canadian health care setting, Klaassen et al.6 included all residents of Ontario diagnosed with one of the ten most prevalent malignancies (which included bladder cancer) from 1997 to 2014. A psychiatric utilization grade (PUG) score in the five years prior to a cancer diagnosis was calculated as follows: 0 – none; 1 – outpatient psychiatric utilization; 2 - emergency department psychiatric utilization; and 3 – psychiatric specific hospital admission. A total of 676,125 patients were included, specifically 359,465 (53.2%) with PUG score 0, 304,559 (45.0%) with PUG score 1, 7,901 (1.2%) with PUG score 2, and 4,200 (0.6%) with PUG score 3. Increasing PUG score was independently associated with worse cancer-specific morality, with an effect gradient across the intensity of pre-diagnosis psychiatric utilization (vs PUG score 0): PUG score 1 HR 1.05 (95% CI 1.04-1.06), PUG score 2 HR 1.36 (95% CI 1.30-1.42), and PUG score 3 HR 1.73 (95% CI 1.63-1.84). In a subgroup analysis specific to anatomic site, bladder cancer patients with pre-diagnosis psychiatric utilization of resources worse cancer-specific morality with increasing PUG score (vs PUG score 0): PUG score 1 HR 1.09 (95% CI 1.03-1.14), PUG score 2 HR 1.29 (95% CI 1.02-1.64), and PUG score 3 HR 2.18 (95% CI 1.62-2.93).

Several studies among bladder cancer patients have also assessed the impact of post-diagnosis mental health diagnosis on outcomes and survival. Using the SEER-Medicare database from 2002 to 2011, Jazzar and colleagues7 identified 3,709 patients who were diagnosed with clinical stage T2 through T4a bladder cancer of which 1,870 (50.4%) were diagnosed with posttreatment psychiatric disorders. Patients who underwent radical cystectomy were identified as being at significantly greater risk of having a posttreatment psychiatric illness compared with those who received radiotherapy and/or chemotherapy (HR 1.19, 95% CI 1.07-1.31):

bladder_health.jpeg

Furthermore, in adjusted analyses, diagnosis of a psychiatric disorder resulted in significantly worse overall survival (HR 2.80, 95% CI, 2.47-3.17) and cancer-specific survival (HR 2.39, 95% CI, 2.05-2.78).

This same group of investigators also used the SEER-Medicare database to assess prescription patterns and predictors in older patients with bladder cancer.8 This cohort comprised 10,516 patients diagnosed with clinical stage T1-T4a, N0, M0 bladder urothelial carcinoma from 2008 to 2012 of which 5,621 (53%) were prescribed psychotropic drugs following bladder cancer diagnosis. Overall, 3,972 (38%) patients had previous psychotropic prescriptions prior to cancer diagnosis, and these patients were much more likely to receive a post-cancer diagnosis prescription. Additionally, prescription rates for psychotropic medications were higher among patients with higher stage bladder cancer (p < 0.001). Gamma-aminobutyric acid modulators/stimulators and serotonin reuptake inhibitors/stimulators were the highest prescribed psychotropic drugs in 21% of all patients. Furthermore, adherence for all drugs was 32% at three months and continued to decrease over time.

Recent work from Ontario has also delineated the rate of post-curative intent cystectomy/radiotherapy utilization of mental health services. Using the Ontario Cancer Registry (2004-2013) to identify 4,296 patients that underwent radical cystectomy (n = 3,332) or curative radiotherapy (n = 964), Raphael et al.9 assessed mental health service use (defined as a visit to a general practitioner, psychiatrist, emergency department or hospitalization), specifically assessing baseline, peri-treatment, and post-treatment mental health service use. Compared to baseline, the rate of mental health service use was higher in the peri-treatment (aRR 1.64, 95% CI 1.48-1.82) and post-treatment periods (aRR 1.45, 95%CI 1.30-1.63), and by 2-years post-treatment, 24.6% (95% CI 23.4%-25.9%) of all patients had utilized mental health services:

incident_rate.jpeg


Patients with baseline mental health service use had substantially higher mental health service use in the peri-treatment (aRR 5.77, 95% CI 4.86-6.86) and post-treatment periods (aRR 4.58, 95% CI 3.78-5.55). Additionally, female patients had higher use of mental health services overall, but males had a higher incremental increase in the post-treatment period compared to baseline.

Over the last several years, population-level studies have assessed the impact of pre-and post-bladder diagnosis mental health illness. Elderly patients with muscle-invasive bladder cancer and a pre-existing mental disorder are less likely to receive guideline-concordant management, which leads to poor overall and disease-specific survival. Furthermore,

half of bladder cancer patients with muscle-invasive bladder cancer who undergo treatment are subsequently diagnosed with a psychiatric disorder, resulting in worse survival outcomes compared with patients who do not have a posttreatment psychiatric diagnosis. Over half of these patients receive a psychotropic prescription within two years of their cancer diagnosis, however there appears to be low adherence to medication use, which emphasizes prolonged patient monitoring and further investigation.


Suicide



Globally, nearly 800,000 people die of suicide every year, accounting for 1.4% of deaths worldwide. Over the last decade, there have been several studies noting that suicide rates among cancer patients appear to be higher than the general population,10 including patients with genitourinary malignancies.11 Among cancer patients, patients with bladder cancer have one of the highest suicide rates. In the SEER database, over a 40-year time frame (1973-2013), 794 patients with bladder cancer (0.24%) died of suicide, 190,734 patients (57.2%) died from other causes, and 142,151 patients (42.6%) were alive.12 Significant factors associated with suicide included being unmarried (vs married: HR 1.74, 95% CI 1.49-2.04), white race (vs black: HR 2.22, 95% CI 1.32-3.74), male (vs female: HR 6.91, 95% CI 5.04-9.47), have regional disease (vs. localized: HR 2.49: 2.05-3.03), live in the Southeast United States (vs. Northeast: HR 2.43, 95% CI 1.78-3.32), not undergo a radical cystectomy (vs cystectomy: HR 1.42, 95% CI 1.03-1.94), and increasing age (>= 80 years vs 60-69 years: HR 1.32, 95% CI 1.06-1.66). As follows are suicide rates per 100,000 person-years of follow-up by a decade of bladder cancer diagnosis:

suicide_rates.jpeg

Guo et al.13 recently published a systematic review to assess how bladder cancer increases suicide risk and to identify demographic and clinical factors associated with suicidal death. This review identified five retrospective cohorts comprising 563,680 patients with bladder cancer. Higher risk of suicide by 1.90-fold was observed among patients with bladder cancer (HR 1.90, 95% CI 1.29-2.81, p = 0.001, I2 = 81.2%), especially in patients older than 70 years of age (HR 1.36, 95% CI 1.29-1.43, p < 0.00, I2 = 0%), those that are unmarried (HR 1.72, 95% CI 1.61-1.83, p < 0.001, I2 = 0%), and those with regional bladder cancer (HR = 1.88, 95% CI: 1.10-3.21; P = 0.021; I2 = 96.3%), compared to those without bladder cancer. In this systematic review, gender and race were not associated with increased suicide risk among patients with bladder cancer.

Despite the plethora of population-level studies (>20) to date suggesting an increased risk of suicidal death among cancer patients compared to the general population, all have failed to account for psychiatric care/psychiatric comorbidities before a cancer diagnosis, which may confound this relationship. In order to assess this discrepancy, Klaassen et al.14 assessed the effect of a cancer diagnosis on the risk of suicide, accounting for pre-diagnosis psychiatric care utilization using population-level data from Ontario for the ten most prevalent cancer types. As previously mentioned, a PUG score in the five years prior to a cancer diagnosis was calculated as follows: 0 – none; 1 – outpatient psychiatric utilization; 2 - emergency department psychiatric utilization; and 3 – psychiatric specific hospital admission. Noncancer controls were matched 4:1 based on sociodemographics, including the PUG score, and a marginal, cause-specific hazard model was used to assess the effect of cancer on the risk of suicidal death. Among 676,470 patients with cancer and 2,152,682 matched noncancer controls, there were 8.2 and 11.4 suicides per 1000 person-years of follow-up, respectively. Patients with cancer had an overall higher risk of suicidal death compared with matched patients without cancer (HR 1.34, 95% CI, 1.22-1.48). This effect was pronounced in the first 50 months after cancer diagnosis (HR 1.60; 95% CI, 1.42-1.81), whereas patients with cancer did not demonstrate an increased risk thereafter:

survival_time.jpeg

Furthermore, among individuals with a PUG score of 0 or 1, those with cancer were significantly more likely to die of suicide compared with controls. There was no difference in suicide risk between patients with cancer and controls for those who had a PUG score of 2 or 3, suggesting that among patients with severe psychiatric comorbidities the impact of a cancer diagnosis was less likely to increase risk of suicidal death. When specifically assessing bladder cancer patients versus non-cancer controls, the risk of suicidal death (accounting for pre-diagnosis psychiatric utilization of resources) was significantly higher (HR 1.73, 95% CI 1.14-2.62), with only lung cancer (HR 2.49, 95% CI 1.98-3.13) and oral cancer (HR 2.55, 95% CI 1.59-4.12) having a higher risk of suicidal death.

Bladder cancer patients have approximately a 70% increased risk of suicidal death compared to the general population/non-cancer controls. This increased risk is particularly pronounced among those that are male, elderly, white, unmarried, and those with non-localized disease. As such, early psychological support must be provided during the follow-up period of these special populations, as they may benefit from targeted survivorship plans.


Future Endeavors



Given the aforementioned data regarding the impact of depression, mental illness, and risk of suicide among bladder cancer patients, the time for prospective intervention and assessment of intervention efficacy among these patients is now.15 Bessa et al.16 performed a systematic review as part of the Medical Research Council Framework for developing complex interventions, providing an overview of the published mental wellbeing interventions that could be used to design an intervention specific for bladder cancer patients. A total of 15,094 records were collected from the search and 10 studies matched the inclusion and exclusion criteria. Of these, nine interventions were for patients with prostate cancer and one for patients with kidney cancer; no studies were found for other urological cancers. Depression was the most commonly reported endpoint measured, and of the included studies with positive efficacy, three were group interventions and two were couple interventions. In the group interventions, all studies showed a reduction in depressive symptoms, and in the couple interventions, there was a reduction in depressive symptoms and a favorable relationship cohesion.

Patient education and rehabilitation programs have also been tested prospectively among bladder cancer patients. Li et al.17 assessed the impact of this program on anxiety, depression, and quality of life in 130 muscle-invasive bladder cancer patients undergoing adjuvant chemotherapy. Patients were randomized 1:1 to the patient education and rehabilitation program group and to the control group. HADS anxiety and depression scores and QLQ-C30 scores were assessed before treatment and after treatment (week 16). They found that after 16 weeks of treatment the patient education and rehabilitation program group exhibited decreased HADS anxiety score (p = 0.036), ΔHADS anxiety score (between week 16 and week 0) (p < 0.001), and percentage of anxiety patients (p = 0.019) compared to control group. With regards to depression outcomes, the patient education and rehabilitation program group presented with numerically reduced HADS depression score (p = 0.076) compared to control group, as well as lower ΔHADS depression score (between week 16 and week 0) (p = 0.014) and percentage of depressed patients (p = 0.015). For quality of life, QLQ-C30 global health status score (p = 0.032), Δglobal health status score (between week 16 and week 0) (p = 0.003), and Δfunctional score (between week 16 and week 0) (p = 0.005) were higher in the patient education and rehabilitation program group compared to control group. However, no difference of QLQ-C30 functional score (p = 0.103), QLQ-C30 symptom score (p = 0.808) or Δsymptom score (between week 16 and week 0) (p = 0.680) was observed between two groups.

As urologic oncologists, we are not specifically trained to treat depression and mental health disorders in our bladder cancer patients, however, identifying risk factors and making appropriate consultations to psycho-oncologists is necessary. To further assess this, Mani et al. evaluated the prevalence of mental distress in patients with newly diagnosed bladder cancer, cancer-information internet search behavior, and the influence of information seeking on level of distress. For this study, 101 bladder cancer patients answered the HADS and Fragebogen zur Belastung von Krebskranken (FBK-R23) questionnaires in order to evaluate mental distress and assess questions concerning information seeking. Analysis of mental distress showed that 23.2% had a score above the HADS-A cutoff, 25.3% above the HADS-D cutoff, and 21.4% showed a pathologic FBK-R23 score. Overall, 75% felt well informed about their illness, and active searches for information/ use of the internet did not correlate with the HADS-A, HADS-D, or FBK-R23 score. However, the quality of the urologist's information and the feeling of being informed correlated with the grade of mental distress.

Besides the treatment of bladder cancer, informing patients about their disease in a psychologically wholesome manner and working together with psycho-oncologically trained psychologists are essential tasks for the treating urologist. Furthermore, future studies assessing interventions for improving mental health and outcomes among bladder cancer patients is crucial to identifying impactful interventions and monitoring strategies. Early work suggests that patient education and rehabilitation programs may be helpful in decreasing depression and anxiety among patients with bladder cancer.

Conclusions



Bladder cancer patients are a comorbid population. While often under-appreciated, many patients with bladder cancer have a pre-existing psychiatric diagnosis at the time of cancer diagnosis, and many others will develop mental health disorders after diagnosis. In addition to decreasing quality of life, previous studies have suggested that psychiatric comorbidities can negatively impact cancer-specific and overall survival. Additionally, bladder cancer patients are at a ~70% increased risk of suicidal death compared to the general population/non-cancer patients. While awareness of the importance of mental health in bladder cancer patients is growing, further studies are needed to assess the role of interventions such as cognitive-behavioral therapy or pharmacotherapy in order to optimize treatment.

Published Date: June 2021

Written by: Zachary Klaassen, MD, MSc, Medical College of Georgia, Augusta, Georgia, USA
References:
  1. He H, Xie H, Chen Y, et al. Global, regional, and national burdens of bladder cancer in 2017: estimates from the 2017 global burden of disease study. BMC Public Health 2020; 20(1): 1693.
  2. Vartolomei L, Ferro M, Mirone V, Shariat SF, Vartolomei MD. Systematic Review: Depression and Anxiety Prevalence in Bladder Cancer Patients. Bladder Cancer 2018; 4(3): 319-26.
  3. Zhang Y, Wang Y, Song B, Li H. Patients' self-report anxiety, depression and quality of life and their predictive factors in muscle invasive bladder cancer patients receiving adjuvant chemotherapy. Psychol Health Med 2020; 25(2): 190-200.
  4. Pham H, Torres H, Sharma P. Mental health implications in bladder cancer patients: A review. Urol Oncol 2019; 37(2): 97-107.
  5. Sathianathen NJ, Fan Y, Jarosek SL, et al. Disparities in Bladder Cancer Treatment and Survival Amongst Elderly Patients with a Pre-existing Mental Illness. Eur Urol Focus 2020; 6(6): 1180-7.
  6. Klaassen Z, Wallis CJD, Goldberg H, et al. The impact of psychiatric utilisation prior to cancer diagnosis on survival of solid organ malignancies. Br J Cancer 2019; 120(8): 840-7.
  7. Jazzar U, Yong S, Klaassen Z, et al. Impact of psychiatric illness on decreased survival in elderly patients with bladder cancer in the United States. Cancer 2018; 124(15): 3127-35.
  8. Jazzar U, Bergerot CD, Shan Y, et al. Use of psychotropic drugs among older patients with bladder cancer in the United States. Psychooncology 2021; 30(6): 832-43.
  9. Raphael MJ, Griffiths R, Peng Y, et al. Mental Health Resource Use Among Patients Undergoing Curative Intent Treatment for Bladder Cancer. J Natl Cancer Inst 2021.
  10. Misono S, Weiss NS, Fann JR, Redman M, Yueh B. Incidence of suicide in persons with cancer. J Clin Oncol 2008; 26(29): 4731-8.
  11. Klaassen Z, Jen RP, DiBianco JM, et al. Factors associated with suicide in patients with genitourinary malignancies. Cancer 2015; 121(11): 1864-72.
  12. Klaassen Z, Goldberg H, Chandrasekar T, et al. Changing Trends for Suicidal Death in Patients With Bladder Cancer: A 40+ Year Population-level Analysis. Clin Genitourin Cancer 2018; 16(3): 206-12 e1.
  13. Guo Z, Gu C, Li S, et al. Incidence and risk factors of suicide among patients diagnosed with bladder cancer: A systematic review and meta-analysis. Urol Oncol 2021; 39(3): 171-9.
  14. Klaassen Z, Wallis CJD, Chandrasekar T, et al. Cancer diagnosis and risk of suicide after accounting for prediagnosis psychiatric care: A matched-cohort study of patients with incident solid-organ malignancies. Cancer 2019; 125(16): 2886-95.
  15. Klaassen Z, Lokeshwar SD, Lowery-Allison A, Wallis CJD. Mental Illness and Bladder Cancer Patients: The Time for Assertive Intervention Is Now. Eur Urol Focus 2020; 6(6): 1188-9.
  16. Bessa A, Rammant E, Enting D, et al. The need for supportive mental wellbeing interventions in bladder cancer patients: A systematic review of the literature. PLoS One 2021; 16(1): e0243136.
  17. Li Z, Wei D, Zhu C, Zhang Q. Effect of a patient education and rehabilitation program on anxiety, depression and quality of life in muscle invasive bladder cancer patients treated with adjuvant chemotherapy. Medicine (Baltimore) 2019; 98(44): e17437.

Best Practices for Management - Indwelling Urinary Catheters

  • Document in the patient’s medical record all procedures involving the catheter or drainage system.
  • Also practice hand hygiene prior to performing catheter care.
  • Remove catheter as soon as possible to reduce the risk of CAUTIs. Insert the catheter using an aseptic technique.
  • Use the smallest size catheter possible.
  • Cleanse the catheter insertion site daily with soap and water or with a perineal cleanser.
  • Use of an antiseptic or meatal care is unnecessary, use soap and water.
  • Avoid routine or arbitrary catheter changing schedules in the absence of infection.
  • Maintain a uniform and adequate daily fluid intake to continuously flush the urinary drainage system.
  • Clamping the catheter prior to removal is unnecessary.
  • Routine catheter and bladder irrigations and/or instillations are not recommended.
  • Avoid routine urine cultures in the absence of infection.
  • Avoid inappropriate use of antibiotics and antimicrobials.
  • Maintain the acidification of urine.
  • Patients and caregivers should be educated about their role in preventing CAUTIs.
  • Acute and long-term care staff should be educated through quality improvement programs about the selection, insertion, and management of indwelling catheters to reduce UTI incidence.
  • Patients with indwelling urinary catheters should be reevaluated periodically to determine whether an alternative method of bladder drainage can be used instead.
  • Patients should undergo bladder training after catheter removal to successfully regain bladder function.
  • Health-care workers and clinicians in institutions should observe their facility’s protocols for care of catheters and drainage bags. Daily catheter care should include:
    • Labeling on bag insertion date, time and place (e.g. OR, ER).
    • Maintain a closed urinary drainage system to prevent introduction of bacteria into the urinary tract.
    • Adequately secure and anchor the catheter to prevent urethral and bladder-neck tension.
    • Ensure that urine drainage is unobstructed and continuous by avoiding dependent loops, ensuring no kinks in tubing and bag is positioned below the bladder but not on the floor.
    • Scan the bladder if no urine is draining to determine if system is obstructed.
    • Use needleless sampling port for urine specimen collection
    • Anchor and secure catheter
    • Empty bag if > 400 mls to prevent tension on catheter and to prevent the migration of bacteria ascending from bag to catheter.
Written by: Diane K. Newman, DNP, ANP-BC, FAAN
References: Document in the patient’s medical record all procedures involving the catheter or drainage system. Also, practice hand hygiene prior to performing catheter care. Remove the catheter as soon as possible to reduce the risk of CAUTIs. Insert the catheter using an aseptic technique

Imaging in Prostate Cancer: An Update on a Rapidly Changing Space

An accurate assessment of the extent of disease is critical to the care of patients with cancer, across the natural history of disease including initial evaluation, following local treatment, and assessing response to systemic therapy. Thus, improvements in radiographic imaging may revolutionize the way we diagnose disease and the treatments we can offer.
Written by: Zachary Klaassen, MD, MSc
References:
  1. Shinohara K, Master VA, Chi T, et al. Prostate needle biopsy techniques and interpretation. In: Vogelzang NJ, Scardino PT, Shipley WU, et al., eds. Comprehensive textbook of genitourinary oncology (3rd ed.). Philadelphia Lippincott Williams & Wilkins; 2006.
  2. Heidenreich A, Bastian PJ, Bellmunt J, et al. EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 2014; 65(1):124-37.
  3. Kongnyuy M, Sidana A, George AK, et al. The significance of anterior prostate lesions on multiparametric magnetic resonance imaging in African-American men. Urol Oncol 2016; 34(6):254.e15-21.
  4. Schouten MG, van der Leest M, Pokorny M, et al. Why and Where do We Miss Significant Prostate Cancer with Multi-parametric Magnetic Resonance Imaging followed by Magnetic Resonance-guided and Transrectal Ultrasound-guided Biopsy in Biopsy-naive Men? Eur Urol 2017; 71(6):896-903.
  5. Mottet N, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol 2017; 71(4):618-629.
  6. Rifkin MD, Zerhouni EA, Gatsonis CA, et al. Comparison of magnetic resonance imaging and ultrasonography in staging early prostate cancer. Results of a multi-institutional cooperative trial. N Engl J Med 1990; 323(10):621-6.
  7. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015; 313(4):390-7.
  8. Vourganti S, Rastinehad A, Yerram NK, et al. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. J Urol 2012; 188(6):2152-7.
  9. Kasivisvanathan V, Stabile A, Neves JB, et al. Magnetic Resonance Imaging-targeted Biopsy Versus Systematic Biopsy in the Detection of Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol 2019.
  10. Eldred-Evans D, Burak P, Connor MJ, et al. Population-Based Prostate Cancer Screening With Magnetic Resonance Imaging or Ultrasonography: The IP1-PROSTAGRAM Study. JAMA Oncol 2021; 7(3):395-402.
  11. Callender T, Emberton M, Morris S, et al. Benefit, Harm, and Cost-effectiveness Associated With Magnetic Resonance Imaging Before Biopsy in Age-based and Risk-stratified Screening for Prostate Cancer. JAMA Netw Open 2021; 4(3):e2037657.
  12. Laurence Klotz CM. Can high resolution micro-ultrasound replace MRI in the diagnosis of prostate cancer? Eur Urol Focus 2019.
  13. Abouassaly R, Klein EA, El-Shefai A, et al. Impact of using 29 MHz high-resolution micro-ultrasound in real-time targeting of transrectal prostate biopsies: initial experience. World J Urol 2019.
  14. Heindel W, Gubitz R, Vieth V, et al. The diagnostic imaging of bone metastases. Dtsch Arztebl Int 2014; 111(44):741-7.
  15. Yang HL, Liu T, Wang XM, et al. Diagnosis of bone metastases: a meta-analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 2011; 21(12):2604-17.
  16. Network NCC. NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer - Version 1.2019. 2019.
  17. Namasivayam S, Martin DR, Saini S. Imaging of liver metastases: MRI. Cancer Imaging 2007; 7:2-9.
  18. Li R, Ravizzini GC, Gorin MA, et al. The use of PET/CT in prostate cancer. Prostate Cancer Prostatic Dis 2018; 21(1):4-21.
  19. Rayn KN, Elnabawi YA, Sheth N. Clinical implications of PET/CT in prostate cancer management. Transl Androl Urol 2018; 7(5):844-854.
  20. Schuster DM, Nieh PT, Jani AB, et al. Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol 2014; 191(5):1446-53.
  21. Wondergem M, van der Zant FM, van der Ploeg T, et al. A literature review of 18F-fluoride PET/CT and 18F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun 2013; 34(10):935-45.
  22. Nanni C, Zanoni L, Pultrone C, et al. (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging 2016; 43(9):1601-10.
  23. Jani AB, Schreibmann E, Goyal S, et al. (18)F-fluciclovine-PET/CT imaging versus conventional imaging alone to guide postprostatectomy salvage radiotherapy for prostate cancer (EMPIRE-1): a single centre, open-label, phase 2/3 randomised controlled trial. Lancet 2021.
  24. Calais J, Ceci F, Eiber M, et al. (18)F-fluciclovine PET-CT and (68)Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol 2019; 20(9):1286-1294.
  25. Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 2020; 395(10231):1208-1216.
  26. Morris MJ, Rowe SP, Gorin MA, et al. Diagnostic Performance of (18)F-DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase 3, Multicenter Study. Clin Cancer Res 2021.
  27. Pienta KJ, Gorin MA, Rowe SP, et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate-Specific Membrane Antigen PET/CT with (18)F-DCFPyL in Prostate Cancer Patients (OSPREY). J Urol 2021:101097JU0000000000001698.
  28. Eiber M, Weirich G, Holzapfel K, et al. Simultaneous (68)Ga-PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer. Eur Urol 2016; 70(5):829-836.
Written by: Diane K. Newman DNP, ANP-BC, FAAN

Does Reduced Renal Function Predispose to Cancer-specific Mortality from Renal Cell Carcinoma? - Beyond the Abstract

The arguments in favor of partial nephrectomy (PN) over radical nephrectomy (RN) for patients with localized renal cell carcinoma (RCC) have been diverse and compelling,1 leading many to advocate for PN whenever feasible, even for potentially aggressive tumors.2 However, some patients with tumors with increased oncologic potential and/or high complexity may not be well-served by PN,

Indwelling Catheter Definition & Types

What is an Indwelling Catheter?

Indwelling Catheter Illustration

An indwelling urinary catheter (IUC), generally referred to as a “Foley” catheter, is a closed sterile system with a catheter and retention balloon that is inserted either through the urethra or suprapubically to allow for bladder drainage. External collecting devices (e.g. drainage tubing and bag) are connected to the catheter for urine collection 

Indwelling urinary catheters are recommended only for short-term use, defined as less than 30 days (EAUN recommends no longer than 14 days.) The catheter is inserted for continuous drainage of the bladder for two common bladder dysfunction: urinary incontinence (UI) and urinary retention.

Written by: Diane K. Newman, DNP, ANP-BC, FAAN

Implications of Guideline-Based, Risk-Stratified Restaging Transurethral Resection of High-Grade Ta Urothelial Carcinoma on Bacillus Calmette-Guérin Therapy Outcomes - Beyond the Abstract

While the role of restaging transurethral resection (reTUR) for high-grade (HG) T1 bladder cancer has well-established diagnostic and therapeutic implications, and guidelines agree on the role of reTUR for HG T1 disease,1-3 this remains an area of discussion for HG Ta tumors. The AUA recommends reTUR for all ‘high-risk’ HG Ta tumors (multifocal, ≥3cm, concomitant carcinoma in situ [CIS], variant histology, lymphovascular invasion [LVI], prostatic urethral involvement);2 while the EAU guidelines reserve reTUR for patients without muscularis propria in the index tumor specimen.1

Designs - Indwelling Urinary Catheters

Bard timeline

Catheters are semi-rigid but flexible tubes. They drain the bladder but block the urethra.

The challenge is to produce a catheter that matches as closely as possible to the normal physiological and mechanical characteristics of the voiding system.catheter_tips.png

This requires construction of a thin-walled, continuously lubricated, collapsible (conformable) catheter to protect the integrity of the urethra; a system to hold the catheter in place without a balloon; and a design to imitate the intermittent washing of the bladder with urine.

Catheter products have changed significantly in their composition, texture, and durability since the 1990s.

The catheter should have a smooth surface with two drainage eyes at the tip that allow for urine drainage.

Drainage eyes are placed either laterally or opposed. Opposing drainage eyes generally facilitate better drainage.

Catheter Tips

The most commonly used catheter is a straight-tipped catheter.

A Coudé-tipped catheter, or Tiemann catheter, is angled upward at the tip to assist in negotiating the upward bend in the male urethra.  

This feature facilitates passage through the bladder neck in the presence of obstruction from a slightly enlarged prostate gland (e.g., in benign prostatic hyperplasia) or through a narrowed stricture in the urethra.catheter_angle.png

The Carson catheter is a slightly larger bulb to assist in negation of restrictions. 

The Council catheter features a reinforced hole at the tip of the catheter.

A whistle-tipped catheter is open at the end and allows drainage of large amounts of debris (e.g., blood clots).

Catheter Size and Length 

Each catheter is sized by the outer circumference and according to a metric scale known as the French (Fr) gauge (range is 6 to 18 Fr), in which each French unit equals 0.33 mm in diameter.catheter_size.png

The golden rule is to use the smallest catheter size (termed bore), generally 14 to 16 Fr, that allows for adequate drainage.

The use of large-size catheters (e.g., 18 Fr or larger) is not recommended because catheters with larger diameters can cause more erosion of the bladder neck and urethral mucosa, can cause stricture formation, and do not allow adequate drainage of periurethral gland secretions, causing a buildup of secretions that may lead to irritation and infection. Also, large size catheters can cause pain and discomfort.  

Balloon Size

A retention balloon prevents the catheter from being expelled. The preferred balloon size may be labeled either 5 mL or 10 mL, and both are instilled with 10 mL of sterileballoon_size.png water for inflation per manufacturer’s instructions. Larger balloons (30 cc – 60 cc) are generally used to facilitate drainage or provide hemostasis when necessary, especially in the postoperative period. The balloon of the catheter usually sits at the base of the bladder, obstructing the internal urethral orifice. 

A fully inflated balloon allows the catheter tip to be located symmetrically. If a 5 mL balloon is inflated with more than 10 mL of water, irritation may occur unilaterally on the bladder wall from increased pressure of the balloon.

The specified amount of inflation ensures a symmetrical shape and allows for the catheter to maintain position in the bladder while minimizing patient discomfort   Underfilling or overfilling may interfere with the correct positioning of the catheter tip, which may lead to irritation and trauma of the bladder wall.

A balloon with a fill size greater than 10 mL, such as a 30 mL balloon, is not recommended because the 10 mL size keeps residual urine minimal, thus reducing the risk ofproper_inflated_balloon.png infections and irritation.

The catheterized bladder is in a collapsed state as a result of constant urine drainage. However, a 30 mL balloon will allow persistence of a small pool of undrained urine, so the bladder emptying is not complete and the undrained urine can leak around the catheter (referred to as “catheter bypassing”)..

The use of a larger balloon size is mistakenly believed by many nurses to be a solution to catheter leakage or urine bypassing around the catheter. However, a large balloon increases the chance of contact between the balloon or catheter tip and the bladder wall, leading to bladder spasms that may cause urine to be forced out around the catheter.

A 30 mL balloon is used primarily to facilitate traction on the prostate gland to stop bleeding in men after prostate surgery or to stop bleeding in women after pelvic catheterized_bladder.pngsurgery.

Routine use of larger capacity balloons (30 mL) should be avoided for long-term use as they can lead to bladder neck and urethral erosion.

Several catheter materials have been found to lose water from the inflated balloon over time in the bladder with 100% silicone catheters losing as much as 50% of their volume within 3 weeks.

In men, the catheter should be passed initially to the bifurcation (the “Y” junction where the balloon arm and catheter meet) to ensure that the balloon will not be inflated in the urethra. 

Catheter Materials

A wide range of catheter materials are available, and the material selected should be chosen by: 

  1. how long the catheter will remain in place,
  2. comfort,
  3. the presence of latex sensitivity,
  4. ease of insertion and removal, and
  5. ability to reduce the likelihood of complications such as urethral and bladder tissue damage, colonization of the catheter system by microorganisms, and encrustation

Note: Prior to insertion, all indwelling catheters should be visually inspected for any imperfections or surface deterioration.

1. Latex Catheter: The possibility of a latex allergy is an important consideration as many urinary catheters are constructed from latex or a related material. 

There are reported increases in allergies and reactions in patients with long-term use of all urinary latex and rubber catheters. Patients who have asthma and other allergies are at increased risk for these allergies. Latex allergy can result in symptoms such as skin irritation, rashes, and blisters. Urethritis and urethral strictures can also result from latex allergies.  Coatings such as silicone and polytetrafluoroethylene (PTFE) are used to coat latex catheters.

2. Hydrogel coating, which remains intact when used, has demonstrated the ability to reduce the high level of cytotoxicity associated with latex catheters. However, coated latex catheters do not protect against an allergic reaction to the underlying latex because the coating wears off.

Bonded hydrogel-coated latex catheters may be longer lasting than silicone catheters because their hydrogel coating prevents bacterial adherence and reduces mucosal friction. Hydrogels or polymers coat the catheter, absorbing water to produce a slippery outside surface. This results in the formation of a thin film of water on the contacting surface, thus improving its smoothness and lubricity. These properties might act as potential barriers to bacterial infection and reduce the adhesion of both gram-positive and gram-negative bacteria to catheters. 

3. Silicone- and hydrogel-coated catheters usually last longer than PTFE-coated catheters. If the person is latex sensitive, silicone catheters should be used. Avoiding silicone_and_hydrogel.pnglatex catheters may also decrease the incidence of encrustation. All-silicone (100%) catheters are biocompatible and are believed to have encrustation-resistant properties.  Silicone catheters are thin-walled, rigid catheters with a larger diameter drainage lumen. 

4. Antimicrobial-coating: A major problem with Foley catheters is that they have a tendency to contribute to urinary tract infections (UTI). This occurs because bacteria can travel up the catheters to the bladder where the urine can become infected. In an attempt to prevent bacterial colonization, catheters have been coated with silver alloy or nitrofurazone, a nitrofurantoin-like drug.

This has been helpful, but it has not completely solved this major problem. An additional problem is that Foley catheters tend to become coated over time with a biofilm that can obstruct the drainage. This increases the amount of stagnant urine left in the bladder, which further contributes to the problem of urinary tract infections. When a Foley catheter becomes clogged, it must be flushed or replaced.

Both nitrofurazone-coated and silver alloy-coated catheters seem to reduce the development of asymptomatic bacteriuria during short-term (< 30 days) use.
Despite their unit cost, there is a suggestion that these devices might be a cost-effective option if overall numbers of infections are significantly reduced through their use.

  • Antibiotic-coated catheters were found in a meta-analysis to prevent or delay bacteriuria in short-term catheterized, hospitalized patients.  However, in 2012, nitrofurazone impregnated catheters were taken off the market.  
  • Silver is an antiseptic that inhibits growth of gram-positive and gram-negative bacteria. Silver alloy-coated catheters are thought to cause less inflammation and have a bacteriostatic effect because they reduce microbacterial adherence and migration of bacteria to the bladder.
    Because they prevent bacterial adherence, these catheters also minimize biofilm formation through their release of silver ions that prevent bacteria from settling on the surface.  
    There appear to be few adverse effects, and microbial resistance to the active agent is unlikely. 
Catheter Drainage Bags
Drainage bags and an anchor for the drainage tube are parts of the design of an indwelling urinary catheter system.  These may include a: leg drainage bag, overnight leg_bag.pngdrainage bag, and a spare leg strap or a device to secure the catheter tubing to the leg.  Drainage bags that cannot be worn and concealed are commonly referred to as “nighttime or overnight bags,” or “large capacity bags,” or “bedside bags”. Drainage bags that can be worn and concealed are commonly referred to as “leg bags” or abdominal bags, commonly referred to as “belly bags.”  Leg bags generally hold 300- 900 cc whereas an overnight bag can hold up to 2000cc.  It is recommended that reusable drainage bag be replaced every 30 days.   

The current design of urinary drainage bags prevents the introduction of bacteria into the closed indwelling urinary catheter system.  There are anti-reflux bags, single use bags, closed urinary drainage systems, and bags with urine sampling ports.  A leg bag cannot be characterized as closed because of the need to regularly open the leg bag for drainage and connect to an overnight drainage bag in most cases.  To minimize opening of a catheter system, a leg bag can be attached to a larger bag for overnight drainage. 



References: 
1. Brosnahan J, A. Jull, et al. Types of urethral catheters for management of short-term voiding problems in hospitalized patients. Cochrane Database of Systematic Reviews, 2004, (1): CD004013.
2. Gray M. Does the construction material affect outcomes in long-term catheterization? JWOCN, 2006, 33: 116-121.
3. Lawrence EL. and IG. Turner. Materials for urinary catheters: A review of their history and development in the UK. Med Engineering Phys, 2005, 27: 443-453.
4. Leuck AM, Johnson JR, Hunt MA, Dhody K, Kazempour K, Ferrieri P, et al. Safety and efficacy of a novel silver-impregnated urinary catheter system for preventing catheter-associated bacteriuria: a pilot randomized clinical trial. Am J Infect Control. 2015;43:260-5. DOI: 10.1016/j.ajic.2014.11.021.
5. Newman D. The indwelling urinary catheter: Principles for best practice. JWOCN, 2007, 24: 655-661.
6. Pickard R, Lam T, MacLennan G, Starr K, Kilonzo M, McPherson G, et al. Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterisation in hospital: a multicentre randomised controlled trial. Lancet. 2012;380:1927-35. DOI: 10.1016/S0140-6736(12)61380-4. 
7. Politano AD, Campbell KT, Rosenberger LH, Sawyer RG. Use of silver in the prevention and treatment of infections: silver review. Surg Infect (Larchmt). 2013;14:8-20. DOI: 10.1089/sur.2011.097.
8. Weissbart SJ, Kaschak CB, Newman DK. Urinary drainage bags. In: Newman DK, Rovner ES, Wein AJ, editors. Clinical Application of Urologic Catheters and Products.  Switzerland: Springer International Publishing; 2018, 133-147.
9. Zugail AS, Pinar U, Irani J. Evaluation of pain and catheter-related bladder discomfort relative to balloon volumes of indwelling urinary catheters: A prospective study.  Investig Clin Urol. 2019 Jan;60(1):35-39. doi: 10.4111/icu.2019.60.1.35. Epub 2018 Dec 6.


Written by: Diane K. Newman, DNP, ANP-BC, FAAN

Surgical Outcomes of Glansectomy and Split Thickness Skin Graft Reconstruction for Localized Penile Cancer - Beyond the Abstract

Penile cancer (PC) is  a rare malignancy with an incidence estimated less than 1/100 000 per year in the Western World1-3

Historically, demolitive surgical approaches, such as total or partial penile amputation, were the most commonly used. Indeed, demolitive options were deemed to be necessary in order to respect a macroscopic surgical margin of at least 2 cm.3-4 If the oncological outcomes of these approaches demonstrated to be satisfactory, they significantly affected aesthetic outcomes, as well as sexual and urinary functions.5-12 
Written by: Mirko Preto, Federica Peretti, Marco Falcone
References:
  1. Backes DM, Kurman RJ, Pimenta JM, Smith JS. Systematic review of human papillomavirus prevalence in invasive penile cancer. Cancer Causes Control 2009;20:449–57.
  2. Chaux A, Netto GJ, Rodriguez IM, et al. Epidemiologic profile, sexual history, pathologic features, and human papillomavirus status of 103 patients with penile carcinoma. World J Urol 2013; 31:861–7.
  3. Albersen M, Parnham A, Joniau S, Sahdev V, Christodoulidou M, Castiglione F, Nigam R, Malone P, Freeman A, Jameson C, Minhas S, Ralph DJ, Muneer A. Predictive factors for local recurrence after glansectomy and neoglans reconstruction for penile squamous cell carcinoma. Urol Oncol. 2018 Apr;36(4):141-146
  4. Das S. Penile amputations for the management of primary carcinoma of the penis. Urol Clin North Am. 1992 May;19(2):277-82
  5. Kieffer JM, Djajadiningrat RS, van Muilekom EA, et al. Quality of life in patients treated for penile cancer. J Urol 2014;192:1105-10.
  6. D’Ancona CA, Botega NJ, De Moraes C et al. Quality of life after partial penectomy for penile carcinoma. Urology 1997;50:593-6. 
  7. Romero FR, Romero KR, Mattos MA, et al. Sexual function after partial penectomy for penile cancer. Urology 2005;66:1292-5.
  8. Opjordsmoen S, Fosså SD. Quality of life in patients treated for penile cancer. A follow-up study. Br J Urol 1994;74:652-7.
  9. Sedigh O, Falcone M, Ceruti C, Timpano M, Preto M, Oderda M, Kuehhas F, Sibona M, Gillo A, Gontero P, Rolle L, Frea B. Sexual function after surgical treatment for penile cancer: Which organ-sparing approach gives the best results? Can Urol Assoc J. 2015 Jul-Aug;9(7-8):E423-7
  10. Parnham AS, Albersen M, Sahdev V, Christodoulidou M, Nigam R, Malone P, Freeman A, Muneer A. Glansectomy and Split-thickness Skin Graft for Penile Cancer. Eur Urol. 2018 Feb;73(2):284-289.
  11. Maddineni SB, Lau MM, Sangar VK. Identifying the needs of penile cancer sufferers: a systematic review of the quality of life, psychosexual and psychosocial literature in penile cancer. BMC Urol 2009;9:8.
  12. Smith Y, Hadway P, Biedrzycki O, et al. Reconstructive surgery for invasive squamous carcinoma of the glans penis. Eur Urol 2007;52:1179–85.
  13. Hoffman MA, Renshaw AA, Loughlin KR. Squamous cell carcinoma of the penis and microscopic pathologic margins: How much margin is needed for local cure? Cancer 1999;85:1565-8.
  14. Minhas S, Kayes O, Hegarty P, et al. What surgical resection margins are required to achieve oncological control in men with primary penile cancer? BJU Int 2005;96:1040-3.
  15. Agrawal A, Pai D, Ananthakrishnan N, et al. The histological extent of the local spread of carcinoma of the penis and its therapeutic implications. BJU Int 2000;85:299-301.
  16. Lindegaard JC, Nielsen OS, Lundbeck FA, Mamsen A, Studstrup HN, von der Maase H. A retrospective analysis of 82 cases of cancer of the penis. Br J Urol 1996;77:883–90.
  17. Philippou P, Shabbir M, Malone P, et al. Conservative surgery for squamous cell carcinoma of the penis: resection margins and longterm oncological control. J Urol. 2012;188:803–808.
  18. Bracka A. Glans resection and plastic repair. BJU Int 2009;105:136–144.
  19. Burnett AL. Penile preserving and reconstructive surgery in the management of penile cancer. Nat Rev Urol 2016;13:249–57.
  20. Beech BB, Chapman DW, Rourke KF. Clinical outcomes of glansectomy with split-thickness skin graft reconstruction for localized penile cancer. Can Urol Assoc J. 2020 Oct;14(10):E482-E486.
  21. Garaffa G, Shabbir M, Christopher N, et al. The surgical management of lichen sclerosus of the glans penis: our experience and review of the literature. J SexMed 2011 Apr;8(4):1246–1253.
  22. Scarberry K, Angermeier KW, Montague D, et al. Outcomes for organ-preserving surgery for penile cancer. Sex Med 2015;3:62-6.
  23. Morelli G, Pagni R, Mariani C, et al. Glansectomy with split-thickness skin graft for the treatment of penile carcinoma. Int J Impot Res 2009;21:311–4.
  24. Joseph P, Christopher C. Skin Grafting - StatPearls - NCBI Bookshelf 2020.